Фонарь-электрошокер

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Электротехника, электроника Электрические и магнитные цепи Линейные цепи синусоидального тока Последовательное соединение резистора, катушки и конденсатора. Комплексный метод расчета цепей синусоидального тока

Электротехника, электроника. Курсовой расчет и вопросы экзамена

Комплексный метод расчета цепей синусоидального тока

  Широкое распространение на практике получил метод расчета цепей синусоидального тока, который принято называть комплексным. Сущность метода состоит в том, что синусоидальные токи, напряжения и ЭДС изображаются комплексными числами, а геометрические операции над векторами заменяются алгебраическими операциями над комплексными числами. Этот метод позволяет рассчитывать цепи синусоидального тока алгебраически аналогично цепям постоянного тока. Принцип наложения, метод наложения Используя метод контурных токов, можно получитьобобщенное уравнениепо расчету любого i-го контурного тока. Теория электрических цепей Курс лекций и задач

2.4.1. Векторное представление синусоидальных величин

Вращающийся вектор, который изображает синусоидальную функцию, можно поместить на комплексную плоскость, в систему перпендикулярных осей:   – действительных чисел,  – мнимых чисел. Положительные направления осей на комплексной плоскости обозначаются индексами: +1 – ось действительных чисел; + – ось мнимых чисел, где = – мнимая единица (рис. 2.17).

  а) б) в)

Рис. 2.17

 Известно, что координаты точки на комплексной плоскости определяются радиусом–вектором этой точки, т.е. вектором, начало которого совпадает с началом координат, а конец находится в точке, соответствующей заданному комплексному числу (рис. 2.17 а).

 Показательная форма записи

где  – модуль; – аргумент или фаза, отсчитываемая от оси +1 против часовой стрелки.

 Применив формулу Эйлера, можно получить тригонометрическую и соответственно алгебраическую форму записи комплексного числа:

,

где .

 Очевидно

.

 Заменим в уравнении для показательной формы записи  на , а на . Получим комплекс тока

,  (2.39)

который является символическим (комплексным) изображением функции  и называется комплекс мгновенного значения тока.

 Комплексы обозначаются теми же буквами, что и их действительные оригиналы, только с чертой внизу. Модуль комплекса мгновенного значения   равен амплитуде синусоидального тока , а его переменный аргумент () является аргументом изображаемой синусоиды (рис. 2.17 б). Из формулы (2.39) можно записать комплекс тока в тригонометрической форме

,

а также получить изображение функции (оригинала)

,  (2.40)

т.е. мгновенное значение тока равно мнимой части комплекса мгновенного значения тока. Ток (2.39) можно представить в виде

,

где  является другим символом, называемым комплексом амплитудного значения. Это аналитическое представление неподвижного вектора, длина которого равна амплитуде тока, а угол между направлениями вектора и осью «+1» на комплексной плоскости равен начальной фазе   (рис. 2.17 в). Комплексом действующего значения называют изображение

Переходные процессы в электрических цепях

Записать комплексы действующих значений напряжения и тока, если их мгновенные значения представлены уравнениями

, А.

Комплекс полного сопротивления и комплекс полной проводимости. Законы Кирхгофа в комплексной форме.

Мощности в комплексной форме Формулы для определения полной, активной и реактивной мощностей записаны раньше.

Повышение коэффициента мощности в цепях синусоидального тока Большинство современных потребителей электрической энергии имеют индуктивный характер нагрузки, токи которой отстают по фазе от напряжения источника.

Электрические цепи с взаимной индуктивностью Общие сведения При рассмотрении цепей синусоидального тока до сих пор учитывалось только явление самоиндукции катушек, обусловленное током в цепи.

ЭДС взаимной индукции ЭДС, индуктируемые в первом и втором контурах, с учетом (2.48, 2.49) можно записать в виде

 

Последовательное соединение двух индуктивно связанных катушек Рассмотрим две катушки, соединенные последовательно и имеющие активные сопротивления , индуктивности  и взаимную индуктивность .

 

Общие сведения Понятие переходного процесса.


Измерение электрических величин