Линейная алгебра

История искусства
Стили в архитектуре и дизайне
История дизайна
Электротехника
Курсовой расчет
ТОЭ типовые задания примеры решения задач
Линейные цепи постоянного тока
Комплексный метод расчета
цепей синусоидального тока
Электрические цепи с
взаимной индуктивностью
Расчет неразветвленных
магнитных цепей
Электромагнитные устройства
Трансформаторы
Однофазный асинхронный двигатель
Электронно-оптические приборы
Электронные усилители и генераторы
Источники питания электронных устройств
Измерение тока и напряжения
Работа электрической машины
постоянного тока в режиме генератора
Генераторы
Лабораторные работы
Контрольная работа
Конспект лекций
Графика
Начертательная геометрия
Решение практических задач
Математика
Методические указания к выполнению
контрольных работ
Решение линейных дифференциальных
уравнений
Поверхности второго порядка
Интегрирование
Предел
Линейная функция
Матрица
Физика
Оптика лекции и примеры решения задач
Электростатика
Туриcтические
достопримечательности
Мексика
Биосферный резерват Сиан-Каан
Ольмеки
Пуэбла-де-Сарагоса
Великая Пирамида Чолула
Кафедральный собор Успения
Пресвятой Богородицы в Мехико
Замок Чапультепек (Castillo de Chapultepec)
Памятник героям независимости
Пирамида Солнца
Францисканские миссии в Сьерра-Горде
Церковь Святого Михаила Архангела
Достопримечательности
Гуанахуато Ла Валенсиана
Алхондига де Гранадитас
Иконографический музей Дон Кихота
Белгород
экскурсия по центральной части г. Белгорода

Смоленский собор

Белгородский государственный
академический театр
Свято-Троицкий бульвар
Санкт Петербург

Мосты Санкт-Петербурга

Троицкий мост
Банковский мост с четырьмя грифонами
Демидов мост через канал Грибоедова
Виды и организация туризма
Культурно-познавательный туризм
Деловой туризм.
Рекреационный туризм
Образовательный туризм
ШОП-ТУР
Религиозный туризм
Экологический туризм
Приключенческий туризм
тур «Затерянный город» в Таиланде
Анимация – новое направление в туризме
Сельский туризм
Горнолыжный туризм
Культурное наследие народов Майя
САМЫЕ РАННИЕ МАЙЯ
ПОСЕЛЕНИЯ РАННЕАРХАИЧЕСКОГО
ПЕРИОДА
ПОЯВЛЕНИЕ КУЛЬТУРЫ МАЙЯ
расцвет культуры «мирафлорес»
ЦЕНТРАЛЬНАЯ ОБЛАСТЬ МАЙЯ.
КУЛЬТУРА «ТСАКОЛ»
В позднеклассический период искусство майя
ИЦЫ И ГОРОД МАЙЯПАН
МАЙЯ-МЕКСИКАНСКИЕ ДИНАСТИИ
В ЮЖНОЙ ОБЛАСТИ
Государство древних майя
МИРОВОЗЗРЕНИЕ МАЙЯ
Диего де Ланда
Развитие туризма в
Новосибирской области

Туристические фирмы

Для отдыхающих в Краснозерском районе

Колыванский район

Памятники археологии

 

Пример 4. Линия, заданная уравнением r=r(j) в полярной системе координат. Требуется:

построить линию по точкам, начиная от j=0 до j=2p и придавая j значения через промежуток ;

найти уравнение данной линии в декартовой системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс  с полярной осью;

по уравнению в декартовой прямоугольной системе координат определить, какая это линия:

.

Решение:

1) Рассмотрим первый способ построения кривой. Придавая углу значения через промежуток , вычисляем соответствующие значения, радиуса r и записываем в виде таблицы найденные полярные координаты точек.

j

0

p

r

0,25

0,26

0,29

0,36

0,5

0,81

1,71

6,57

¥

j

2p

r

6,57

1,71

0,81

0,5

0,36

0,29

0,26

0,25

По найденным точкам строим кривую в полярной системе координат (см. рис.)

 

 Рис.

2) Перейдем к прямоугольным координатам, используя формулы:

  и .

Подставляя выражение для r и соsj в заданное уравнение

,

получаем:

.

Выполняем преобразования, чтобы освободиться от знаменателя.

;

, ;

.

Перенося 2х в правую часть и возводя в квадрат обе части равенства, имеем:

.

Преобразуя, получаем уравнение кривой в каноническом виде.

 - парабола.

3) Полученное уравнение определяет параболу, ось симметрии которой ось абсцисс, а вершина находится в точке , ветви направлены влево.

Данные результаты соответствуют результатам, полученным ранее (см. рис.).

Пример 5. Дана система линейных уравнений:

доказать ее совместность и решить тремя способами:

Методом Гаусса;

По формулам Крамера;

Средствами матричного исчисления.

Решение: Теорема Кронекера-Капелли. Система совместна тогда и только тогда, когда ранг матрицы этой системы равен рангу ее расширенной матрицы, т. е. r(A)=r(A1), где

,.

Расширенная матрица системы имеет вид:

.

Умножим первую строку на (–3),а вторую на (2); прибавим после этого элементы первой строки к соответствующим элементам второй строки; вычтем из второй строки третью. В полученной матрице первую строку оставляем без изменений.

~

Разделим элементы третьей строки на (6) и поменяем местами вторую и третью строки:

~~

Умножим вторую строку на (–11) и прибавим к соответствующим элементам третьей строки.

~

Разделим элементы третьей строки на (10).

~~.

Найдем определитель матрицы А.

.

Следовательно, r(A)=3. Ранг расширенной матрицы r(A1) так же равен 3, т.е.

r(A)=r(A1)=3  Þ система совместна.

1) Исследуя систему на совместность, расширенную матрицу преобразовали по методу Гаусса.

  Метод Гаусса состоит в следующем:

Приведение матрицы к треугольному виду, т. е. ниже главной диагонали должны находиться нули (прямой ход).

Из последнего уравнения находим х3 и подставляем его во второе, находим х2, и зная х3, х2 подставляем их в первое уравнение, находим х1 (обратный ход).

Запишем, преобразованную по методу Гаусса, расширенную матрицу

~

в виде системы трех уравнений:

  Þ х3=1

х2=х3 Þ  х3=1

 2х1=4+х2+х3 Þ 2х1=4+1+1  Þ

Þ  2х1=6 Þ х1=3

Ответ: х1=3 , х2=1, х3=1. 

2) Решим систему по формулам Крамера: если определитель системы уравнений Δ отличен от нуля, то система имеет единственное решение, которое находится по формулам

.

Вычислим определитель системы Δ:

Т.к. определитель системы отличен от нуля, то согласно правилу Крамера, система имеет единственное решение. Вычислим определители Δ1, Δ2, Δ3. Они получаются из определителя системы Δ заменой соответствующего столбца на столбец свободных коэффициентов.

Находим по формулам неизвестные:

Ответ: х1=3 , х2=1, х3=1.

3) Решим систему средствами матричного исчисления, т. е. при помощи обратной матрицы.

А×Х=В  Þ Х=А-1× В, где А-1 – обратная матрица к А,

  - столбец свободных членов,

  - матрица-столбец неизвестных.

Обратная матрица считается по формуле:

  (*)

где D - определитель матрицы А, Аij – алгебраические дополнения элемента аij матрицы А. D = 60 (из предыдущего пункта). Определитель отличен от нуля, следовательно, матрица А обратима, и обратную к ней матрицу можно найти по формуле (*). Найдем алгебраические дополнения для всех элементов матрицы А по формуле:

Аij=(-1)i+j Mij .

 

 

 

 

Запишем обратную матрицу.

.

Сделаем проверку по формуле: А-1× А=Е.

А-1А=

Вывод: так как произведение А-1× А дает единичную матрицу, то обратная матрица А-1 найдена верно и решение системы определяется по формуле Х=А-1×В.

.

Ответ:  х1=3 , х2=1, х3=1. 

Проверка. Подставим полученные значения в систему. Получим:

Т. к. неизвестные х1 , х2, х3 обратили каждое уравнение в тождество, то они найдены верно. 

Пример 6. Решить систему методом Гаусса и найти какие-нибудь два базисных решения системы.

Решение:

Расширенная матрица данной системы имеет вид

Выполним прямой ход метода Гаусса.

Умножим первую строку на (-1) и прибавим ко второй и третьей строке. Получим

Меняем местами вторую и третью строки матрицы. Получаем

Вторую строку умножаем на (-2) и прибавляем к третьей. Получаем

Разделим третью строку на 2. Получим

Итак, прямой ход осуществлен, в результате преобразования матрицы получим систему уравнений, эквивалентную заданной

Обратный ход позволяет последовательно определить все неизвестные системы. Так как система содержит 5 неизвестных и всего 3 уравнения, то выберем x4, x5 - свободными переменными, а x1, x2 x3 – базисными переменными.

Из последнего уравнения находим x3=3-x4-x5 и подставляем во второе уравнение для определения x2. Получаем

Подставляем найденные x2 и x3 в первое уравнение и находим x1=6+x2-x3+x4-x5=6+ -3+x4 +x5 +x4-x5;

x1=3,5+2,5x4-0,5x5.

В результате получаем общее решение системы

.

Одно базисное решение получаем при x4=x5=0, т.е. x1=3,5; x2=0,5; x3=3 или X1=(3,5; 0,5; 3; 0; 0).

Чтобы получить другое базисное решение, достаточно задать x4=1; x5=0, тогда x1=6; x2=1; x3=2 или X2=(6; 1; 2; 1; 0).

Математика примеры решения задач