Электротехника радиотехнические схемы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Электротехника Лекции
  • ПОНЯТИЕ О ПЕРЕМЕННОМ ТОКЕ
  • ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ
  • Электрические цепи трехфазного
    электрического тока
  • СОЕДИНЕНИЕ ИСТОЧНИКОВ И
    ПРИЕМНИКОВ ЭНЕРГИИ ТРЕУГОЛЬНИКОМ
  • Электрические измерения и приборы
  • ЭЛЕКТРОДИНАМИЧЕСКАЯ СИСТЕМА
  • ИЗМЕРЕНИЕ ТОКА И НАПРЯЖЕНИЯ
  • Трансформаторы
  • ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ТРАНСФОРМАТОРЕ
  • ПРИВЕДЕННЫЙ ТРАНСФОРМАТОР
  • ВЕКТОРНАЯ ДИАГРАММА ТРАНСФОРМАТОРОВ
  • ТРЕХФАЗНЫЕ ТРАНСФОРМАТОРЫ
  • ТРАНСФОРМАТОР ДЛЯ ДУГОВОЙ СВАРКИ
  • Асинхронные машины
  • ПРИНЦИП ДЕЙСТВИЯ АСИНХРОННОГО
    ДВИГАТЕЛЯ
  • ПРИВЕДЕНИЕ ПАРАМЕТРОВ ОБМОТКИ
    РОТОРА К ОБМОТКЕ СТАТОРА
  • УРАВНЕНИЕ ВРАЩАЮЩЕГО МОМЕНТА
  • ОДНОФАЗНЫЕ АСИНХРОННЫЕ ДВИГАТЕЛИ
  • Двухфазный конденсаторный двигатель
  • СПЕЦИАЛЬНЫЕ РЕЖИМЫ РАБОТЫ
    АСИНХРОННЫХ МАШИН
  • Синхронные машины
  • СИНХРОННЫЙ ДВИГАТЕЛЬ
  • ШАГОВЫЙ ДВИГАТЕЛЬ
  • Машины постоянного тока
  • ОБМОТКИ ЯКОРЯ МАШИНЫ
    ПОСТОЯННОГО ТОКА
  • ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА
  • ОДНОЯКОРНЫЕ ПРЕОБРАЗОВАТЕЛИ
  • Электропривод и элементы систем автоматики
  • ЭЛЕКТРИЧЕСКИЕ АППАРАТЫ И ЭЛЕМЕНТЫ
  • Принцип автоматического управления
  • Электрооборудование станочного парка
    школьных мастерских и кабинетов
  • Электрические осветительные установки
  • ОПРЕДЕЛЕНИЕ СЕЧЕНИЯ ПРОВОДОВ
    ПО ДОПУСТИМОМУ НАГРЕВУ
  • Правила по технике безопасности
    для общеобразовательных школ
  • История развития электротехники.
  • Основные понятия и определения
    в электротехнике
  • Закон Ома для участка цепи, несодержащего ЭДС.
  • Смешанное соединение сопротивлений
  • Методы расчёта электрических цепей.
  • Метод контурных токов
  • Элементы электрических цепей
  • Сопротивление
  • Закон Ома
  • Законы Кирхгофа
  • Потенциальная диаграмма
  • Преобразование схем электрических цепей
  • Преобразование треугольника
    в эквивалентную звезду
  • Методы расчета сложных электрических цепей
  • Метод контурных токов
  • Метод узловых напряжений
  • Теорема компенсации
  • Теорема об эквивалентном источнике
  • Порядок расчета задачи методом
    эквивалентного генератора
  • Мощность в электрических цепях периодического
    синусоидального тока
  • РЕАКТИВНЫЕ ДВУХПОЛЮСНИКИ
  • Канонические схемы двухполюсников
  • Режимы резонанса в электрических цепях
  • Резонанс токов
  • Индуктивно связанные электрические цепи
  • Последовательное соединение индуктивно
    связанных катушек при встречном включении
  • Параллельное соединение индуктивно
    связанных катушек
  • Расчет цепей со взаимной индуктивностью.
  • Воздушный трансформатор
  • Генераторы
  • ИЗМЕРИТЕЛЬНЫЕ ГЕНЕРАТОРЫ
  • Генераторы гармонических колебаний
  • Характеристики генераторов звуковых частот
  • Генераторы сверхвысоких частот
  • Генераторы качающейся частоты
    и сигналов специальной формы
  • Генераторы шумовых сигналов
  • Генераторы шума на полупроводниковых прибора
  • Генераторы шумоподобных сигналов
  • ГЕНЕРАТОРЫ СИГНАЛОВ
    СВЕРХВЫСОКИХ ЧАСТОТ
  • Лабораторные работы
  • ПОРЯДОК ВЫПОЛНЕНИЯ
    ЛАБОРАТОРНЫХ РАБОТ
  • Исследование характеристик источника
    ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ постоянного тока
  • ИССЛЕДОВАНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ
  • Исследование переходных процессов в
    цепях первого порядка
  • ИССЛЕДОВАНИЕ ЛИНЕЙНЫХ ПАССИВНЫХ
    ДВУХПОЛЮСНИКОВ
  • ИССЛЕДОВАНИЕ ЯВЛЕНИЯ РЕЗОНАНСА
  • ИССЕДОВАНИЕ ТРЕХФАЗНЫХ
    ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ
  • ИССЛЕДОВАНИЕ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ
    НЕСИНУСОИДАЛЬНОГО ПЕРИОДИЧЕСКОГО ТОКА
  • Исследование однофазного трансформатора
  • Исследование трехфазного асинхронного
    двигателя с короткозамкнутым ротором
  • Исследование синхронных микродвигателей
  • Исследование исполнительного двигателя
    постоянного тока
  • ИССЛЕДОВАНИЕ ЦЕПИ ПОСТОЯННОГО ТОКА
    МЕТОДОМ УЗЛОВЫХ НАПРЯЖЕНИЙ
  • Метод эквивалентного генератора напряжения.
  • ИССЛЕДОВАНИЕ ПРОСТЫХ ЦЕПЕЙ
    СИНУСОИДАЛЬНОГО ТОКА
  • Описание лабораторной установки
  • Контрольная работа
  • РАСЧЕТ СЛОЖНОЙ ЦЕПИ ПОСТОЯННОГО ТОКА
  • Законы Кирхгофа
  • Примеры расчета линейных электрических цепей
    по законам Ома и Кирхгофа
  • Метод наложения.
  • Метод контурных токов
  • Метод узловых напряжений
  • Проверим выполнение второго закона Кирхгофа
    для внешнего контура
  • Метод эквивалентного генератора
  • Примеры расчета линейных электрических цепей
    методом эквивалентного генератора
  • Электрические цепи однофазного
    синусоидального тока
    .
  • Построить топографическую диаграмму напряжени
  • Проверить выполнение баланса мощностей.
  • Режимы резонанса в электрических цепях
  • Примеры расчета электрических цепей
     в режиме резонанса
  • Построить векторную диаграмму.
  • Цепи с индуктивно–связанными элементами
  • Воздушный трансформатор
  • Генераторы шумовых сигналов

    Шумовым сигналом называется совокупность одновременно существующих электрических колебаний, частоты и амплитуды которых носят случайный характер. Типичным примером шумового сигнала являются электрические флуктуации. Генераторы шума вырабатывают шумовые измерительные радиотехнические сигналы с нормированными статистическими характеристиками.

    Генераторы шума применяются в качестве источников флуктуационных помех при исследовании предельной чувствительности радиоприемных и усилительных устройств, в качестве калиброванных источников мощности при измерении напряженности поля или шумов внеземного происхождения, в качестве имитаторов полного сигнала многоканальной аппаратуры связи, для измерения нелинейных искажений и частотных характеристик радиоустройств с помощью анализатора спектра с постоянной полосой пропускания.

    Основным требованием к генераторам шума является равномерность спектрального состава шумового сигнала в возможно большей полосе частот, от 0 до оо («белый» шум), а практически — от единиц герц до десятков гигагерц. Такой измерительный сигнал позволяет исследовать устройство или систему одновременно во всем диапазоне рабочих частот. В реальных генераторах «белый» шум получить невозможно, но для любого устройства, полоса пропускания которого во много раз меньше спектра шумового сигнала, последний можно считать «белым».

    По диапазону генерируемых частот генераторы шума делятся на низкочастотные (20 Гц — 20 кГц и 15 Гц — 6,5 МГц); высокочастотные (1—600 МГц); сверх высокочастотные (500 МГц — 12 ГГц).

    Основной узел шумового генератора — задающий генератор (рис. 12). Его сигналы должны иметь равномерную спектральную плотность мощности по всей требуемой полосе частот (теоретически это белый шум), достаточное выходное напряжение (мощность) шумового сигнала; неизменность и воспроизводимость характеристик шума во времени и при изменении внешних влияний; заменяемость после истечения гарантийного срока работы без нарушения выходных параметров генератора. Наибольшее распространение в качестве источников шума получили резисторы, вакуумныеи полупроводниковые диоды, фотоэлектронные умножители и газоразрядные лампы.

    Таким образом, в задающем генераторе используются физические явления, при которых возникают достаточно интенсивные шумы со статическими характеристиками и параметрами, поддающимися достаточно несложному математическому анализу.

    Источники теплового шума

    Нагретый проволочный резистор. В качестве образцового источника шума может служить нагретый проволочный резистор, среднее квадратическое значение напряжения на котором рассчитывается по формуле:

     (итш 1)

    где к =1,38.10-23 Дж/град — постоянная Больцмана; Т— абсолютная температура резистора в градусах Кельвина; R — сопротивление резистора; ∆f— полоса пропускания.

    Если нагрузить шумящий резистор другим, равным ему по сопротивлению, то на втором резисторе выделится мощность

    Отсюда можно определить спектральную плотность мощности шума

    Спектральная плотность мощности шума резистора при нормальной температуре равна S(f) = kT0 = 4.10-21 Вт/Гц. Произведение kT0 удобно использовать в качестве единицы спектральной плотности мощности. Например, 5 kT0 означает, что температура шумящего резистора в пять раз выше нормальной и спектральная плотность равна 2.10-20 Вт/Гц.

    Из выражения (итш 1) можно найти сопротивление резистора:; отсюда следует, что активные элементы, в которых возникают шумы, можно замещать эквивалентным шумящим резистором, шумовое сопротивление Rш которого при нормальной температуре Т0 равно: .

    Конструктивно резистор выполняется в виде вольфрамовой спирали, намотанной на керамический каркас, температура которой поддерживается постоянной.

    Вакуумный диод, работающий в режиме насыщения, является источником шума вследствие случайного характера процесса термоэлектронной эмиссии. Среднеквадратическое значение шумового тока диода определяется известным выражением , где е — заряд электрона (е = 1,6.10-19 Кл); Is — ток насыщения, А; ∆f— полоса пропускания устройства, на вход которого поступает ток насыщения диода, Гц. Вакуумные диоды, например типа 2Д2С, генерируют шум в диапазоне частот 1—600 МГц. Напряжение и уровень спектральной плотности мощности на выходе генератора регулируется изменением тока накала диода.

    Болометрический генератор шума. К источникам тепловой шумовой мощности относится и болометрический генератор. Болометр представляет собой вакуумный стеклянный баллон, внутри которого натянута вольфрамовая нить.

    Источники теплового шума используются в качестве образцовых генераторов шумовых напряжений, так как расчетные данные хорошо совпадают с практическими результатами.

    В шумовых генераторах также применяются фотоэлектронные умножители, газоразрядные трубки, шумовые диоды и т. п.

    Газоразрядные источники Газоразрядные генераторы шума. Широкое применение в качестве первичного источника шума в сантиметровом диапазоне волн нашли газоразрядные шумовые трубки (ГШТ) с положительным столбом. Газоразрядные шумовые трубки имеют высокую равномерность спектральной плотности мощности шума в широкой полосе частот, стабильный и относительно высокий уровень мощности, просты в эксплуатации, устойчивы к жестким воздействиям внешней среды и обладают достаточно высокой эксплуатационной надежностью.

    Газоразрядный шумовой генератор (рис. а) выполнен в виде стеклянной трубки, наполненной инертным газом (аргоном или неоном) до давления от сотен до тысяч паскалей. На одном конце трубки расположен прямонакальный, или подогреваемый катод, на противоположном — анод. Свойство газоразрядных трубок генерировать шумы обусловлено колебаниями электронов в плазме.

     Для практического использования шумового излучения положительного столба ГШТ помещают в специальные генераторные секции. В зависимости от диапазона частот и типа трубки могут быть использованы генераторные секции, выполненные на волноводе, коаксиальной или полосковой линии.

    Волноводные шумовые генераторы (рис. б) представляют собой отрезок волновода, в центре широкой стенки которого под малым углом (7... 15°) помещается ГШТ. Наклонное положение трубки в волноводе обеспечивает при разряде равномерное внесение потерь на достаточной длине линии, благодаря чему достигается удовлетворительное согласование ГШТ с линией передачи в широком диапазоне частот.

    Разработка генераторов шума в коротковолновой части миллиметровых волн сопряжена с большими трудностями из-за малого диаметра и толщины стенок ГШТ. В связи с этим шумовые генераторы миллиметрового диапазона изготовляют пакетированными без возможности в процессе эксплуатации производить смену ГШТ.

    В длинноволновой части сантиметровых волн из-за сложности согласования трубки с линией передачи обычно применяют коаксиальные или полосковые генераторы шума.

    В коаксиальных генераторах шума ГШТ помещают внутри ленточной спирали, которая является внутренним проводником коаксиальной линии. Внешним проводником служит цилиндрическая поверхность корпуса линии. Форма спирали (зазор между соседними витками, диаметр спирали) определяется исходя из требуемого волнового сопротивления, связи трубки с линией передачи, диапазона частот.

    Полосковые генераторы шума представляют собой симметричную полосковую линию, вдоль оси которой помещается газоразрядная шумовая трубка.

    Интенсивность излучения ГШТ определяется главным образом электронной температурой плазмы. Потери, вносимые генератором шума в тракт, в выключенном состоянии в основном определяются потерями в стенке трубки, линии передачи и в присоединительных элементах.

    На практике часто требуется использовать генераторы шума в импульсном режиме. Длительность импульса горения ГШТ ограничена снизу длительностью переходного процесса в газовом разряде. В зависимости от допустимых искажений минимальная длительность модулирующего импульса может составлять 0,2... 1 мс.

    Электротехника ТОЭ типовые задания примеры Лабораторные