Электротехника радиотехнические схемы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Электротехника Лекции
  • ПОНЯТИЕ О ПЕРЕМЕННОМ ТОКЕ
  • ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ
  • Электрические цепи трехфазного
    электрического тока
  • СОЕДИНЕНИЕ ИСТОЧНИКОВ И
    ПРИЕМНИКОВ ЭНЕРГИИ ТРЕУГОЛЬНИКОМ
  • Электрические измерения и приборы
  • ЭЛЕКТРОДИНАМИЧЕСКАЯ СИСТЕМА
  • ИЗМЕРЕНИЕ ТОКА И НАПРЯЖЕНИЯ
  • Трансформаторы
  • ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ТРАНСФОРМАТОРЕ
  • ПРИВЕДЕННЫЙ ТРАНСФОРМАТОР
  • ВЕКТОРНАЯ ДИАГРАММА ТРАНСФОРМАТОРОВ
  • ТРЕХФАЗНЫЕ ТРАНСФОРМАТОРЫ
  • ТРАНСФОРМАТОР ДЛЯ ДУГОВОЙ СВАРКИ
  • Асинхронные машины
  • ПРИНЦИП ДЕЙСТВИЯ АСИНХРОННОГО
    ДВИГАТЕЛЯ
  • ПРИВЕДЕНИЕ ПАРАМЕТРОВ ОБМОТКИ
    РОТОРА К ОБМОТКЕ СТАТОРА
  • УРАВНЕНИЕ ВРАЩАЮЩЕГО МОМЕНТА
  • ОДНОФАЗНЫЕ АСИНХРОННЫЕ ДВИГАТЕЛИ
  • Двухфазный конденсаторный двигатель
  • СПЕЦИАЛЬНЫЕ РЕЖИМЫ РАБОТЫ
    АСИНХРОННЫХ МАШИН
  • Синхронные машины
  • СИНХРОННЫЙ ДВИГАТЕЛЬ
  • ШАГОВЫЙ ДВИГАТЕЛЬ
  • Машины постоянного тока
  • ОБМОТКИ ЯКОРЯ МАШИНЫ
    ПОСТОЯННОГО ТОКА
  • ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА
  • ОДНОЯКОРНЫЕ ПРЕОБРАЗОВАТЕЛИ
  • Электропривод и элементы систем автоматики
  • ЭЛЕКТРИЧЕСКИЕ АППАРАТЫ И ЭЛЕМЕНТЫ
  • Принцип автоматического управления
  • Электрооборудование станочного парка
    школьных мастерских и кабинетов
  • Электрические осветительные установки
  • ОПРЕДЕЛЕНИЕ СЕЧЕНИЯ ПРОВОДОВ
    ПО ДОПУСТИМОМУ НАГРЕВУ
  • Правила по технике безопасности
    для общеобразовательных школ
  • История развития электротехники.
  • Основные понятия и определения
    в электротехнике
  • Закон Ома для участка цепи, несодержащего ЭДС.
  • Смешанное соединение сопротивлений
  • Методы расчёта электрических цепей.
  • Метод контурных токов
  • Элементы электрических цепей
  • Сопротивление
  • Закон Ома
  • Законы Кирхгофа
  • Потенциальная диаграмма
  • Преобразование схем электрических цепей
  • Преобразование треугольника
    в эквивалентную звезду
  • Методы расчета сложных электрических цепей
  • Метод контурных токов
  • Метод узловых напряжений
  • Теорема компенсации
  • Теорема об эквивалентном источнике
  • Порядок расчета задачи методом
    эквивалентного генератора
  • Мощность в электрических цепях периодического
    синусоидального тока
  • РЕАКТИВНЫЕ ДВУХПОЛЮСНИКИ
  • Канонические схемы двухполюсников
  • Режимы резонанса в электрических цепях
  • Резонанс токов
  • Индуктивно связанные электрические цепи
  • Последовательное соединение индуктивно
    связанных катушек при встречном включении
  • Параллельное соединение индуктивно
    связанных катушек
  • Расчет цепей со взаимной индуктивностью.
  • Воздушный трансформатор
  • Генераторы
  • ИЗМЕРИТЕЛЬНЫЕ ГЕНЕРАТОРЫ
  • Генераторы гармонических колебаний
  • Характеристики генераторов звуковых частот
  • Генераторы сверхвысоких частот
  • Генераторы качающейся частоты
    и сигналов специальной формы
  • Генераторы шумовых сигналов
  • Генераторы шума на полупроводниковых прибора
  • Генераторы шумоподобных сигналов
  • ГЕНЕРАТОРЫ СИГНАЛОВ
    СВЕРХВЫСОКИХ ЧАСТОТ
  • Лабораторные работы
  • ПОРЯДОК ВЫПОЛНЕНИЯ
    ЛАБОРАТОРНЫХ РАБОТ
  • Исследование характеристик источника
    ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ постоянного тока
  • ИССЛЕДОВАНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ
  • Исследование переходных процессов в
    цепях первого порядка
  • ИССЛЕДОВАНИЕ ЛИНЕЙНЫХ ПАССИВНЫХ
    ДВУХПОЛЮСНИКОВ
  • ИССЛЕДОВАНИЕ ЯВЛЕНИЯ РЕЗОНАНСА
  • ИССЕДОВАНИЕ ТРЕХФАЗНЫХ
    ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ
  • ИССЛЕДОВАНИЕ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ
    НЕСИНУСОИДАЛЬНОГО ПЕРИОДИЧЕСКОГО ТОКА
  • Исследование однофазного трансформатора
  • Исследование трехфазного асинхронного
    двигателя с короткозамкнутым ротором
  • Исследование синхронных микродвигателей
  • Исследование исполнительного двигателя
    постоянного тока
  • ИССЛЕДОВАНИЕ ЦЕПИ ПОСТОЯННОГО ТОКА
    МЕТОДОМ УЗЛОВЫХ НАПРЯЖЕНИЙ
  • Метод эквивалентного генератора напряжения.
  • ИССЛЕДОВАНИЕ ПРОСТЫХ ЦЕПЕЙ
    СИНУСОИДАЛЬНОГО ТОКА
  • Описание лабораторной установки
  • Контрольная работа
  • РАСЧЕТ СЛОЖНОЙ ЦЕПИ ПОСТОЯННОГО ТОКА
  • Законы Кирхгофа
  • Примеры расчета линейных электрических цепей
    по законам Ома и Кирхгофа
  • Метод наложения.
  • Метод контурных токов
  • Метод узловых напряжений
  • Проверим выполнение второго закона Кирхгофа
    для внешнего контура
  • Метод эквивалентного генератора
  • Примеры расчета линейных электрических цепей
    методом эквивалентного генератора
  • Электрические цепи однофазного
    синусоидального тока
    .
  • Построить топографическую диаграмму напряжени
  • Проверить выполнение баланса мощностей.
  • Режимы резонанса в электрических цепях
  • Примеры расчета электрических цепей
     в режиме резонанса
  • Построить векторную диаграмму.
  • Цепи с индуктивно–связанными элементами
  • Воздушный трансформатор
  • Генераторы сверхвысоких частот

    Генераторы сверхвысоких частот (СВЧ-генераторы) работают в диапазоне частот 1...140 ГГц. По типу выходного соединителя с исследуемой схемой они делятся на коаксиальные и волноводные, причем последние более высокочастотные. Для СВЧ-генераторов характерно однодиапазонное построение, с небольшим перекрытием по частоте (около октавы — 2 раза). Некалиброванная выходная мощность измерительного СВЧ-генератора — несколько Вт, а калиброванная достигает нескольких мкВт. Шкалы калиброванных аттенюаторов СВЧ-генераторов градуируют в дБ, а ГСС — в дБ и мкВт.

    Генераторы сверхвысоких частот используют для настройки радиоприемных устройств радиолокационных и радионавигационных станций, систем космической связи и спутникового вещания, измерения параметров антенн и т. д. Обобщенная структурная схема генератора СВЧ показана на рис.

    Особенностями измерительных генераторов этого вида являются относительная простота электронной части схемы и сложность механических узлов приборов. Схема генератора СВЧ включает собственно СВЧ-генератор, импульсный модулятор, измеритель малой мощности, частотомер и калиброванный аттенюатор. Все высокочастотные узлы генератора соединяются волноводами.

    Задающие СВЧ-генераторы измерительных приборов выполняют на отражательных клистронах с внешним или внутренним резонатором, на диодах Ганна, магнетронах, лавинно-пролетных диодах (ЛПД) или на лампах обратной волны (ЛОВ).

    В измерительных СВЧ-генераторах необходима тщательная экранировка, так как утечка мощности с ростом частоты возрастает. Провода питания выполняются в виде коаксиальных кабелей со специальным наполнением, хорошо поглощающим энергию СВЧ-колебаний. Повышенные требования предъявляют и к источникам питания, так как активные элементы СВЧ-диапазона чувствительны к нестабильности питающих напряжений.

    Цифровые измерительные генераторы низких частот

    Цифровые генераторы низких частот по сравнению с аналоговыми характеризуются более эффективными метрологическими характеристиками: высокими точностью установки и стабильностью частоты, малым коэффициентом нелинейных искажений (строго синусоидальной формой), постоянством уровня выходного сигнала. Цифровые генераторы, получающие все более широкое распространение, удобнее аналоговых в эксплуатации: выше быстродействие, существенно проще установка требуемой частоты, более наглядна индикация. Кроме того, цифровые генераторы имеют возможность автоматической перестройки частоты по заранее заданной программе и применения в сочетании с цифровыми средствами обработки информации.

    Действие цифровых генераторов основано на принципе формирования числового кода с последующим преобразованием его в аналоговый гармонический сигнал. Последний аппроксимируется функцией, моделируемой с помощью ЦАП.

    Принципы аппроксимации

    Самый простой вид аппроксимации — ступенчатая. Она заключается в представлении (замене) синусоидального колебания напряжением ступенчатой формы, весьма мало отличающейся от синусоидальной кривой (рис. 6.8, а).

    Рис. 6. 8. Цифровой генератор низких частот: а — ступенчатая аппроксимация; б — упрощенная структурная схема

    Аппроксимируемое гармоническое напряжение   дискретизируется во времени (равномерная дискретизация с шагом ∆t) и в интервале, разделяющем два соседних момента времени ti и ti+l, синусоидальное колебание заменяется напряжением постоянного тока — ступенькой, высота которой равна значению аппроксимируемого напряжения в момент ti т.е.  . В результате такой замены вместо кривой синусоидальной формы получается ступенчатая линия, изображенная на рис. 6.8, а.

    При имеющемся периоде Т гармонического колебания число ступенек р, приходящихся на один период, определяется шагом дискретизации: р = T/∆t. Если же из технических соображений число ступенек задано, то изменение шага дискретизации приводит к изменению периода формируемого напряжения, поскольку Т = p∆t.

    Учитывая, что ti = i∆t, уравнение ступенчатой кривой можно представить в виде  или с учетом значения р и соотношения ω = 2π/Т записать в следующем виде:

    Кроме того, ступенчатая кривая тем точнее приближается по форме к синусоиде (уменьшается погрешность аппроксимации), чем больше выбрано число ступеней р. Когда это число достаточно велико, сформированное ступенчатое напряжение можно рассматривать как низкочастотное синусоидальное напряжение, искаженное в небольшой степени высокочастотной аддитивной помехой.

    Спектральный анализ напряжения, полученного путем ступенчатой аппроксимации, показывает, что его спектр содержит гармонику основной частоты и ряд высших гармоник. При этом оказывается, что ближайшей к основной высшей гармоникой будет составляющая с номером р-l, следующей — гармоника номера р + 1, затем гармоники номеров 2р - 1 и 2р + 1 и т.д. Например, при p = 25 и частоте напряжения f основной гармоники ближайшими высшими гармониками будут 24-я, 26-я и 49-я, 51-я гармоники, т. е. напряжения частот 24f, 26f, 49f, 51f Такие соотношения между основной и высшими гармониками позволяют просто осуществить высококачественную фильтрацию, резко ослабляющую уровни высших гармоник, т.е. получить синусоидальное напряжение, характеризуемое достаточно малым коэффициентом нелинейных искажений.

    Упрощенная структурная схема цифрового генератора, формирующего ступенчатую кривую напряжения, приведена на рис. 6.8, б. Импульсный кварцевый генератор вырабатывает периодическую последовательность коротких импульсов с периодом следования Т. На выходе делителя частоты с регулируемым коэффициентом деления g получается периодическая последовательность импульсов с периодом следования ∆t = gT, задающим шаг дискретизации. Импульсы поступают в счетчик емкостью р. Кодовая комбинация, определяемая числом i импульсов, накопленных в счетчике, передастся в схему ЦАП. Последний вырабатывает напряжение, соответствующее числу i, т.е. . Таким образом формируются р ступенек аппроксимируемой кривой. После накопления р импульсов счетчик переполняется и сбрасывается в нуль. С приходом (р + 1)-го импульса начинается формирование нового периода ступенчатой кривой.

    Частоту формируемого колебания при фиксированном числе ступенек р регулируют, изменяя шаг дискретизации ∆t, что достигается изменением коэффициента деления g делителя частоты.

    Электротехника ТОЭ типовые задания примеры Лабораторные