Электротехника радиотехнические схемы

Генераторы сверхвысоких частот

Генераторы сверхвысоких частот (СВЧ-генераторы) работают в диапазоне частот 1...140 ГГц. По типу выходного соединителя с исследуемой схемой они делятся на коаксиальные и волноводные, причем последние более высокочастотные. Для СВЧ-генераторов характерно однодиапазонное построение, с небольшим перекрытием по частоте (около октавы — 2 раза). Некалиброванная выходная мощность измерительного СВЧ-генератора — несколько Вт, а калиброванная достигает нескольких мкВт. Шкалы калиброванных аттенюаторов СВЧ-генераторов градуируют в дБ, а ГСС — в дБ и мкВт.

Генераторы сверхвысоких частот используют для настройки радиоприемных устройств радиолокационных и радионавигационных станций, систем космической связи и спутникового вещания, измерения параметров антенн и т. д. Обобщенная структурная схема генератора СВЧ показана на рис.

Особенностями измерительных генераторов этого вида являются относительная простота электронной части схемы и сложность механических узлов приборов. Схема генератора СВЧ включает собственно СВЧ-генератор, импульсный модулятор, измеритель малой мощности, частотомер и калиброванный аттенюатор. Все высокочастотные узлы генератора соединяются волноводами.

Задающие СВЧ-генераторы измерительных приборов выполняют на отражательных клистронах с внешним или внутренним резонатором, на диодах Ганна, магнетронах, лавинно-пролетных диодах (ЛПД) или на лампах обратной волны (ЛОВ).

В измерительных СВЧ-генераторах необходима тщательная экранировка, так как утечка мощности с ростом частоты возрастает. Провода питания выполняются в виде коаксиальных кабелей со специальным наполнением, хорошо поглощающим энергию СВЧ-колебаний. Повышенные требования предъявляют и к источникам питания, так как активные элементы СВЧ-диапазона чувствительны к нестабильности питающих напряжений.

Цифровые измерительные генераторы низких частот

Цифровые генераторы низких частот по сравнению с аналоговыми характеризуются более эффективными метрологическими характеристиками: высокими точностью установки и стабильностью частоты, малым коэффициентом нелинейных искажений (строго синусоидальной формой), постоянством уровня выходного сигнала. Цифровые генераторы, получающие все более широкое распространение, удобнее аналоговых в эксплуатации: выше быстродействие, существенно проще установка требуемой частоты, более наглядна индикация. Кроме того, цифровые генераторы имеют возможность автоматической перестройки частоты по заранее заданной программе и применения в сочетании с цифровыми средствами обработки информации.

Действие цифровых генераторов основано на принципе формирования числового кода с последующим преобразованием его в аналоговый гармонический сигнал. Последний аппроксимируется функцией, моделируемой с помощью ЦАП.

Принципы аппроксимации

Самый простой вид аппроксимации — ступенчатая. Она заключается в представлении (замене) синусоидального колебания напряжением ступенчатой формы, весьма мало отличающейся от синусоидальной кривой (рис. 6.8, а).

Рис. 6. 8. Цифровой генератор низких частот: а — ступенчатая аппроксимация; б — упрощенная структурная схема

Аппроксимируемое гармоническое напряжение   дискретизируется во времени (равномерная дискретизация с шагом ∆t) и в интервале, разделяющем два соседних момента времени ti и ti+l, синусоидальное колебание заменяется напряжением постоянного тока — ступенькой, высота которой равна значению аппроксимируемого напряжения в момент ti т.е.  . В результате такой замены вместо кривой синусоидальной формы получается ступенчатая линия, изображенная на рис. 6.8, а.

При имеющемся периоде Т гармонического колебания число ступенек р, приходящихся на один период, определяется шагом дискретизации: р = T/∆t. Если же из технических соображений число ступенек задано, то изменение шага дискретизации приводит к изменению периода формируемого напряжения, поскольку Т = p∆t.

Учитывая, что ti = i∆t, уравнение ступенчатой кривой можно представить в виде  или с учетом значения р и соотношения ω = 2π/Т записать в следующем виде:

Кроме того, ступенчатая кривая тем точнее приближается по форме к синусоиде (уменьшается погрешность аппроксимации), чем больше выбрано число ступеней р. Когда это число достаточно велико, сформированное ступенчатое напряжение можно рассматривать как низкочастотное синусоидальное напряжение, искаженное в небольшой степени высокочастотной аддитивной помехой.

Спектральный анализ напряжения, полученного путем ступенчатой аппроксимации, показывает, что его спектр содержит гармонику основной частоты и ряд высших гармоник. При этом оказывается, что ближайшей к основной высшей гармоникой будет составляющая с номером р-l, следующей — гармоника номера р + 1, затем гармоники номеров 2р - 1 и 2р + 1 и т.д. Например, при p = 25 и частоте напряжения f основной гармоники ближайшими высшими гармониками будут 24-я, 26-я и 49-я, 51-я гармоники, т. е. напряжения частот 24f, 26f, 49f, 51f Такие соотношения между основной и высшими гармониками позволяют просто осуществить высококачественную фильтрацию, резко ослабляющую уровни высших гармоник, т.е. получить синусоидальное напряжение, характеризуемое достаточно малым коэффициентом нелинейных искажений.

Упрощенная структурная схема цифрового генератора, формирующего ступенчатую кривую напряжения, приведена на рис. 6.8, б. Импульсный кварцевый генератор вырабатывает периодическую последовательность коротких импульсов с периодом следования Т. На выходе делителя частоты с регулируемым коэффициентом деления g получается периодическая последовательность импульсов с периодом следования ∆t = gT, задающим шаг дискретизации. Импульсы поступают в счетчик емкостью р. Кодовая комбинация, определяемая числом i импульсов, накопленных в счетчике, передастся в схему ЦАП. Последний вырабатывает напряжение, соответствующее числу i, т.е. . Таким образом формируются р ступенек аппроксимируемой кривой. После накопления р импульсов счетчик переполняется и сбрасывается в нуль. С приходом (р + 1)-го импульса начинается формирование нового периода ступенчатой кривой.

Частоту формируемого колебания при фиксированном числе ступенек р регулируют, изменяя шаг дискретизации ∆t, что достигается изменением коэффициента деления g делителя частоты.

Электротехника ТОЭ типовые задания примеры Лабораторные