КОНСПЕКТ ЛЕКЦИЙ ПО ОБЩЕЙ ЭЛЕКТРОТЕХНИКЕ

Теоремы линейных цепей

Цель лекции №5.

Ознакомившись с лекцией №5 по электротехнике, студент должен знать:

формулировки всех ниже перечисленных теорем;

уметь пользоваться этими теоремами при решении задач.

Теоремы линейных цепей.

Теорема компенсации.

В электрической цепи любой пассивный элемент можно заменить эквивалентным источником напряжения, э.д.с. которого равна падению напряжения на данном элементе E=U=IR и направлена навстречу ему.

Справедливость этого утверждения вытекает из того, что любое из слагающих падения напряжений, входящих в уравнения по второму закону Кирхгофа может быть перенесено в другую сторону уравнения с противоположным знаком, т.е. может рассматриваться как дополнительная э.д.с., направленная навстречу току.

Рис_5_31

Рис.31. Служит иллюстрацией к доказательству теоремы компенсации.

Рис. 31. Иллюстрация к теореме компенсации.

Если в ветвь ''ab'' рис.31,а последовательно включить две равные, но противоположно направленные э.д.с. E/=E//=IR, то точки ''a'' и ''d'', ''c'' и ''b'' оказываются соответственно точками одинакового потенциала:

Таким образом, закоротив точки ''a'' и ''d'' и исключив, получим этот участок из ветви «ab», получим схему рис. 31,в. Ток ветви при этом не изменится.

Теорема взаимности (обратимости).

Если источник э.д.с. k- ой ветви Ek вызывает в ветви «n» ток In, то этот же источник э.д.с., будучи включенным в ветвь «n» вызовет в ветви «k» тот же ток Ik=In.

Рис_5_32

Рис.32. Иллюстрация к теореме взаимности.

In=Ekqkn, Ik=Enqnk (41)

Эти выражения вытекают из формулы 27,в.

Т.к. qkn=qnk и Ek=En, то In=Ik.

Все пассивные линейные электрические цепи обладают свойствами взаимности (обратимости).

Электрические цепи, для которых выполняется условие qkn=qnk называются обратимыми цепями.

Использование метода обратимости пассивных линейных электрических цепей в ряде случаев упрощает расчеты.

Пример.

Рис_5_пример_1Определить величину и направление тока I4 в цепи, воспользовавшись для расчета цепи теоремой взаимности. Внутренним сопротивлением источника пренебречь.

E1=10B; R1=4Ом; R2=6Ом; R3=4Ом; R4=1,8Ом; R5=1Ом.

Решение:

Использование теоремы взаимности позволяет преобразовать сложную исходную цепь рис.1 в простую рис.2.

Рис_5_пример_2Простой цепь оказалась потому, что узлы «d» и «b» после переноса источника в ветвь c-d, связанные между собой проводом без сопротивления, слились в один узел. Следовательно, сопротивления R1 и R2 соединены параллельно. Так же параллельно соединены сопротивления R3 и R5.

На рис.3 эта же цепь изображена наглядно:

Рис_5_пример_3

Эквивалентное сопротивление:

Ток

Токи I1/ и I5/ найдем по правилу плеч:

Ток

Но ток I/ в схеме рис.2 после переноса источника в четвертую ветвь, согласно теореме взаимности, должен быть равен току I4 в схеме рис.1 до переноса этого источника:

I4=I/=0,4(A)

Следует обратить внимание на то, что направление э.д.с. на рис.2 выбрано совпадающим с положительным направлением тока этой ветви до переноса э.д.с. При этом положительное направление тока I/ на рис.2 должно совпадать с направлением э.д.с. в этой ветви до переноса источника.

Электротехника ТОЭ типовые задания примеры Лабораторные