КОНСПЕКТ ЛЕКЦИЙ ПО ОБЩЕЙ ЭЛЕКТРОТЕХНИКЕ

Методы расчета сложных электрических цепей

Метод контурных токов – один из основных и широко применяемых на практике методов. Он заключается в определении по второму закону Кирхгофа контурных токов. Для каждого контура цепи задают ток, который остается неизменным. В цепи протекает столько контурных токов, сколько независимых контуров в ней содержится. Направление контурного тока выбирают произвольно.

Контурные токи, проходя через узел, остаются непрерывными. Следовательно, первый закон Кирхгофа выполняется автоматически. Уравнения с контурными токами записываются только для второго закона Кирхгофа. Число уравнений, составленных по методу контурных токов, меньше чем по методу законов Кирхгофа.

Рис_4_28

Рис.28. Иллюстрация к методу контурных токов.

На рис.28 показана цепь с двумя независимыми контурами, следовательно, и с двумя контурными токами I11 и I22.

Токи в ветвях I1 и I2 равны контурным токам:

I1=I11, I2=I22

Ток I3 равен сумме этих двух контурных токов:

I3=I11+I22

По второму закону Кирхгофа для первого контура цепи:

I1r1+I3r3=E1-E3

Или: I11r1+(I11+I22)r3=E1-E3;

I11 (r1+r2)+I22r3=E1-E3

Обозначим r1+r2=r11

r3=r12; E1-E3

Тогда: I11r11+I2r12=E11

r11 – сумма всех сопротивлений, входящих в контур I, называется собственным сопротивлением контура.

r12 – сопротивление ветви, общей для контура I и II;

E11=E1-E2 – алгебраическая сумма всех э.д.с., содержащихся в первом контуре; со знаком «-» берется э.д.с., действующая навстречу контурному току рассматриваемого контура.

E11 называется контурной э.д.с.

Аналогично для второго контура рис.28.

I11r21+I22r22=E22,

где r21=r3; r22=r2+r3;

E22=E2-E3

Уравнения, составленные по методу контурных токов, всегда записывают в виде системы. Для схемы рис.28:

В результате решения системы находят контурные токи, а затем токи ветвей.

Если заданная электрическая цепь содержит n независимых контуров, то на основании второго закона Кирхгофа получается n контурных уравнений:

 (29)

Собственные сопротивления rii входят в уравнения (29) со знаком «+», поскольку обход контура принимается совпадающим с положительным направлением контурного тока Iii. Общие сопротивления rik войдут в уравнения со знаком «-», когда токи Ii и Ik направлены в них встречно.

Число уравнений, составляемых по методу контурных токов, определяется по формуле:

Nур=Nb-Ny+1-Nи.т.

где Nb – число ветвей электрической цепи;

Ny – число узлов;

Nи.т. – число идеальных источников тока.

Рис_4_пример2Если в цепи отсутствуют источники тока, число уравнений равно числу контурных токов и, соответственно, числу независимых контуров рассматриваемой электрической цепи.

Пример.

Решим пример 2 параграфа 11, используя метод контурных токов.

Цепь содержит три контура, через которые протекают контурные токи.

При наличии источников тока надо так направлять контурные токи, чтобы они протекали через данные источники. Но через один источник тока не может протекать два контурных тока.

На рис.1 обозначены положительные направления контурных токов. Очевидно, что I11=J1; I22=-J2

Контурный ток I33 – неизвестен, для него составляем уравнение:

I33 (R3+R4+R5+R6)-I11 (R3+R4)+I22 (R5+R3)=0

В правой части уравнения стоит «0», т.к. отсутствует контурная э.д.с.

В результате решения определяем I33=16,25 мА

Итак: I1=I11=20мА; I3=I11-I22-I33=20-(-10)-16,25=13,75мА.

I4=-I11+I33=-20+16,25=-3,75мА;

I5=I22+I33=-10+16,25=6,25мА;

I6=I33=16,25мА.

Электротехника ТОЭ типовые задания примеры Лабораторные