Электротехника радиотехнические схемы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Электротехника Лекции
  • ПОНЯТИЕ О ПЕРЕМЕННОМ ТОКЕ
  • ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ
  • Электрические цепи трехфазного
    электрического тока
  • СОЕДИНЕНИЕ ИСТОЧНИКОВ И
    ПРИЕМНИКОВ ЭНЕРГИИ ТРЕУГОЛЬНИКОМ
  • Электрические измерения и приборы
  • ЭЛЕКТРОДИНАМИЧЕСКАЯ СИСТЕМА
  • ИЗМЕРЕНИЕ ТОКА И НАПРЯЖЕНИЯ
  • Трансформаторы
  • ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ТРАНСФОРМАТОРЕ
  • ПРИВЕДЕННЫЙ ТРАНСФОРМАТОР
  • ВЕКТОРНАЯ ДИАГРАММА ТРАНСФОРМАТОРОВ
  • ТРЕХФАЗНЫЕ ТРАНСФОРМАТОРЫ
  • ТРАНСФОРМАТОР ДЛЯ ДУГОВОЙ СВАРКИ
  • Асинхронные машины
  • ПРИНЦИП ДЕЙСТВИЯ АСИНХРОННОГО
    ДВИГАТЕЛЯ
  • ПРИВЕДЕНИЕ ПАРАМЕТРОВ ОБМОТКИ
    РОТОРА К ОБМОТКЕ СТАТОРА
  • УРАВНЕНИЕ ВРАЩАЮЩЕГО МОМЕНТА
  • ОДНОФАЗНЫЕ АСИНХРОННЫЕ ДВИГАТЕЛИ
  • Двухфазный конденсаторный двигатель
  • СПЕЦИАЛЬНЫЕ РЕЖИМЫ РАБОТЫ
    АСИНХРОННЫХ МАШИН
  • Синхронные машины
  • СИНХРОННЫЙ ДВИГАТЕЛЬ
  • ШАГОВЫЙ ДВИГАТЕЛЬ
  • Машины постоянного тока
  • ОБМОТКИ ЯКОРЯ МАШИНЫ
    ПОСТОЯННОГО ТОКА
  • ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА
  • ОДНОЯКОРНЫЕ ПРЕОБРАЗОВАТЕЛИ
  • Электропривод и элементы систем автоматики
  • ЭЛЕКТРИЧЕСКИЕ АППАРАТЫ И ЭЛЕМЕНТЫ
  • Принцип автоматического управления
  • Электрооборудование станочного парка
    школьных мастерских и кабинетов
  • Электрические осветительные установки
  • ОПРЕДЕЛЕНИЕ СЕЧЕНИЯ ПРОВОДОВ
    ПО ДОПУСТИМОМУ НАГРЕВУ
  • Правила по технике безопасности
    для общеобразовательных школ
  • История развития электротехники.
  • Основные понятия и определения
    в электротехнике
  • Закон Ома для участка цепи, несодержащего ЭДС.
  • Смешанное соединение сопротивлений
  • Методы расчёта электрических цепей.
  • Метод контурных токов
  • Элементы электрических цепей
  • Сопротивление
  • Закон Ома
  • Законы Кирхгофа
  • Потенциальная диаграмма
  • Преобразование схем электрических цепей
  • Преобразование треугольника
    в эквивалентную звезду
  • Методы расчета сложных электрических цепей
  • Метод контурных токов
  • Метод узловых напряжений
  • Теорема компенсации
  • Теорема об эквивалентном источнике
  • Порядок расчета задачи методом
    эквивалентного генератора
  • Мощность в электрических цепях периодического
    синусоидального тока
  • РЕАКТИВНЫЕ ДВУХПОЛЮСНИКИ
  • Канонические схемы двухполюсников
  • Режимы резонанса в электрических цепях
  • Резонанс токов
  • Индуктивно связанные электрические цепи
  • Последовательное соединение индуктивно
    связанных катушек при встречном включении
  • Параллельное соединение индуктивно
    связанных катушек
  • Расчет цепей со взаимной индуктивностью.
  • Воздушный трансформатор
  • Генераторы
  • ИЗМЕРИТЕЛЬНЫЕ ГЕНЕРАТОРЫ
  • Генераторы гармонических колебаний
  • Характеристики генераторов звуковых частот
  • Генераторы сверхвысоких частот
  • Генераторы качающейся частоты
    и сигналов специальной формы
  • Генераторы шумовых сигналов
  • Генераторы шума на полупроводниковых прибора
  • Генераторы шумоподобных сигналов
  • ГЕНЕРАТОРЫ СИГНАЛОВ
    СВЕРХВЫСОКИХ ЧАСТОТ
  • Лабораторные работы
  • ПОРЯДОК ВЫПОЛНЕНИЯ
    ЛАБОРАТОРНЫХ РАБОТ
  • Исследование характеристик источника
    ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ постоянного тока
  • ИССЛЕДОВАНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ
  • Исследование переходных процессов в
    цепях первого порядка
  • ИССЛЕДОВАНИЕ ЛИНЕЙНЫХ ПАССИВНЫХ
    ДВУХПОЛЮСНИКОВ
  • ИССЛЕДОВАНИЕ ЯВЛЕНИЯ РЕЗОНАНСА
  • ИССЕДОВАНИЕ ТРЕХФАЗНЫХ
    ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ
  • ИССЛЕДОВАНИЕ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ
    НЕСИНУСОИДАЛЬНОГО ПЕРИОДИЧЕСКОГО ТОКА
  • Исследование однофазного трансформатора
  • Исследование трехфазного асинхронного
    двигателя с короткозамкнутым ротором
  • Исследование синхронных микродвигателей
  • Исследование исполнительного двигателя
    постоянного тока
  • ИССЛЕДОВАНИЕ ЦЕПИ ПОСТОЯННОГО ТОКА
    МЕТОДОМ УЗЛОВЫХ НАПРЯЖЕНИЙ
  • Метод эквивалентного генератора напряжения.
  • ИССЛЕДОВАНИЕ ПРОСТЫХ ЦЕПЕЙ
    СИНУСОИДАЛЬНОГО ТОКА
  • Описание лабораторной установки
  • Контрольная работа
  • РАСЧЕТ СЛОЖНОЙ ЦЕПИ ПОСТОЯННОГО ТОКА
  • Законы Кирхгофа
  • Примеры расчета линейных электрических цепей
    по законам Ома и Кирхгофа
  • Метод наложения.
  • Метод контурных токов
  • Метод узловых напряжений
  • Проверим выполнение второго закона Кирхгофа
    для внешнего контура
  • Метод эквивалентного генератора
  • Примеры расчета линейных электрических цепей
    методом эквивалентного генератора
  • Электрические цепи однофазного
    синусоидального тока
    .
  • Построить топографическую диаграмму напряжени
  • Проверить выполнение баланса мощностей.
  • Режимы резонанса в электрических цепях
  • Примеры расчета электрических цепей
     в режиме резонанса
  • Построить векторную диаграмму.
  • Цепи с индуктивно–связанными элементами
  • Воздушный трансформатор
  • Характеристики генераторов звуковых частот

    Генераторы звукового диапазона частот (низкочастотные генераторы) имеют обычно значительный уровень мощности выходного сигнала — до 5... 10 Вт.Однако такая мощность может выделяться только на согласованной нагрузке, поэтому на выходе генератора часто включают согласующий трансформатор, например, на нагрузки 60, 600, 6000 Ом. Показания электронного вольтметра выходного напряжения будут правильными тоже только при согласованной нагрузке генератора. Погрешность установки частоты генератора можно снизить до величины, меньшей одного процента, ее нестабильность — того же порядка. Повышают стабильность частоты путем применения прецизионных внешних элементов (конденсаторов, индуктивностей и резисторов).

    В задающих генераторах звуковых частот используются три метода генерирования:

    прямой;

    метод биений;

    метод электронного моделирования.

    В генераторе, показанном на рис. 6.3, а, используется прямой метод генерации.

    Для повышения стабильности частоты звуковых генераторов часто применяют задающие генераторы на биениях. Структурная схема задающего генератора содержит два первичных высокочастотных генератора фиксированных частот f1 и f2, смеситель и фильтр промежуточной частоты (рис. .5).

    Трехфазный синхронный генератор. Симметричная нагрузка   Рассмотрим здесь работу трехфазного синхронного генератора при симметричной нагрузке, когда векторы фазных токов равны по величине и сдвинуты по фазе на 120°. При этом будем иметь в виду одиночную работу генератора, когда он работает на свою собственную сеть независимо от других синхронных машин. 

    Рис. 5. Структурная схема измерительного генератора на биениях

    Метод биений заключается в том, что колебания звуковой частоты образуются в результате воздействия на нелинейный элемент смесителя двух близких по частоте гармонических колебаний f1 и f2. При этом частота f2 может меняться в пределах от f1 до f2+F, где F— наибольшая частота рабочего диапазона. На выходе смесителя получают комбинационные частоты, в том числе и так называемую промежуточную частоту Fпч=f2-f1. Колебание промежуточной частоты Fпч выделяется фильтром промежуточной частоты.

    При разработке измерительных генераторов на биениях принимают меры, направленные на обеспечение высокой стабильности частоты первичных генераторов колебаний. Как правило, предусматривают возможность периодической калибровки частоты генератора. Коэффициент нелинейных искажений генерируемых колебаний обычно составляет десятые доли процента и в основном определяется качеством фильтра промежуточной частоты.

    Метод электронного моделирования используют для получения гармонических колебаний инфранизкой частоты.

    Генератор инфранизких частот может быть построен по обобщенной структурной схеме (рис. 6) с электронным управлением частотой. Такие устройства принято называть функциональными генераторами.

    Рис. 6. Структурные схемы колебательного звена: а — электронная модель; б — усилительная; в — интегрирующая

    Задающей генератор представляет собой электронную модель колебательного звена. Основным элементом электронной модели колебательного звена является интегратор, построенный на усилителе постоянного тока — операционном усилителе. Интегратор, как правило, представляет собой запоминающее звено. На рис. 6.6, а показана структурная схема электронной модели колебательного звена, включаемого в цепь положительной обратной связи автогенератора инфранизких частот. Электронная модель содержит два последовательно включенных интегратора и инвертор в виде усилителя. Усилительное и интегрирующие звенья функционального генератора представлены на рис. 6.6, б,в.

    Характеристики высокочастотных генераторов

    В диапазоне радиочастот в средствах измерений используются как генераторы сигналов, так и генераторы стандартных сигналов. Генераторы сигналов имеют большую среднюю выходную мощность (до 3 Вт) и используются для питания измерительных передающих антенн и других мощных устройств. Генераторы стандартных сигналов — маломощные источники с низким уровнем выходного напряжения (до 1 В) — применяют при испытаниях и настройке узлов радиоаппаратуры. Основные требования, предъявляемые к ГСС: высокие стабильность частоты и амплитуды выходного сигнала, малый коэффициент нелинейных искажений.

    В генераторах стандартных сигналов предусматривается возможность получения амплитудной модуляции за счет использования как внешнего, так и внутреннего источников напряжения. Внутренняя модуляция обычно действует на частотах 400 и 1000 Гц.

    Генераторы сигналов высоких частот являются источниками незатухающих или модулированных по амплитуде синусоидальных измерительных сигналов, параметры которых известны с нормируемой погрешностью. Эти генераторы работают в диапазоне 100 (50) кГц — 30 (50) МГц и применяются в основном для настройки радиовещательных приемников, для измерений характеристик четырехполюсников, для питания различных радиоустройств. Современные высокочастотные генераторы измерительных сигналов относятся к единой конструктивной серии генераторов на диапазон частот от 100 кГц до 1 ГГц, предназначенной для замены существующего парка генераторов указанного диапазона. Они выполняются на транзисторах и микросхемах с использованием широкополосного усиления и автоматических регулировок.

    Основным узлом генератора является задающий LC-reнератор. (генератор Г4-102) Диапазон генерируемых частот разбивается на ряд поддиапазонов, устанавливаемых подключением соответствующих катушек индуктивности. Изменение частоты в пределах поддиапазона осуществляется с помощью конденсатора переменной емкости. Резонансная частота поддиапазонах не превышает 2—3, а генератора f= 1/ изменяется обратно пропорционально  , поэтому перекрытие в поддиапазонов достигает 8. Малое перекрытие позволяет повысить точность градуировки шкалы частот и уменьшить погрешность ее установки. Амплитудная модуляция осуществляется в модуляторе М, представляющем собой широкополосный усилитель с нелинейным коэффициентом передачи, изменяемым модулирующим сигналом .

    На выходе модулятора включен фильтр верхних частот. Входной сигнал UBX является суммой сигнала высокой (несущей) частоты uf, амплитуда которого мала, и сигнала низкой (модулирующей) частоты uF с большой амплитудой. Напряжение модулирующего сигнала uF перемещает рабочую точку усилителя по характеристике 1 на участки с разной крутизной, и на выходе модулятора образуется высокочастотный сигнал, амплитуда которого меняется По закону изменения модулирующего сигнала. Фильтр верхних частот не пропускает модулирующее напряжение, и на его выходе получается высокочастотный амплитудно-модулированный сигнал uвых

    При таком способе модуляции ее коэффициент не зависит от уровня сигнала высокой частоты, а определяется только уровнем низкочастотного модулирующего сигнала. Последний поступает либо от внутреннего генератора Г , вырабатывающего напряжение с частотой 1 кГц, либо от внешнего источника с частотами от 50 Гц до 15 кГц. Максимальный уровень модулирующего сигнала, соответствующий модуляции 90 %, устанавливается при выведенном низкочастотном аттенюаторе Am и контролируется вольтметром через детектор (выпрямительный преобразователь ВПр1), когда переключатель П находится в положении 2. Изменение коэффициента модуляции и отсчет его значения выполняется с помощью того же аттенюатора дискретно, через 10 %.

    После модулятора высокочастотный сигнал поступает на вход широкополосного усилителя У2, охваченного цепью автоматической регулировки уровня АРУ. В цепь АРУ входят выпрямительный преобразователь ВПр2, дифференциальный усилитель постоянного тока ДУ и регулятор опорного напряжения РОН. На вход 1 ДУ поступает постоянное напряжение, пропорциональное среднему значению выходного сигнала, а на вход 2 — опорное напряжение. Разность этих напряжений является управляющим сигналом, воздействующим на модулятор так, что его коэффициент передачи изменяется и разность напряжений стремится к нулю.

    Уровень сигнала на основном выходе можно изменять в пределах 0,5 мкВ—0,5 В, Для этого предусмотрен ступенчатый резистивный аттенюатор на П-образных звеньях, рассчитанный на нагрузку 50 Ом. Для уменьшения помех выходному сигналу, возникающих вследствие наличия внутренних и внешних электромагнитных полей, каждый элемент аттенюатора заключен в экранирующую камеру, а весь аттенюатор — в массивный металлический кожух. Плавное изменение выходного сигнала в пределах 10 дБ осуществляется с помощью опорного напряжения, получаемого от устройства РОН.

    Следует иметь в виду, что в точке а выходное сопротивление усилителя У2 составляет доли ома, так как выходное напряжение не зависит от изменения нагрузки и с помощью АРУ поддерживается постоянным. Для обеспечения конечного выходного сопротивления генератора, необходимого для согласования генератора с нагрузкой, между выходом У2 и входом аттенюатора Am включен балластный резистор Rб сопротивлением 50 Ом. Уровень выходного сигнала усилителя У2 контролируется вольтметром через переключатель /7 в положении 1. В положении переключателя 3 можно контролировать напряжение блока питания БП. В генераторах высокой частоты предусматривается вспомогательный выход через широкополосный усилитель У1,. На выходе имеется сигнал 1 В, который используется для точного измерения частоты внешним частотомером и для других целей.

    Типовая относительная погрешность установки частоты 1 %; относительная нестабильность частоты 2,5.10-4 за 15 мин; погрешность установки коэффициента модуляции 10 %; погрешность установки опорного уровня 1 дБ (генератор Г4-102).

    Генераторы ультравысоких частот (например, генератор Г4-107) работают на частотах до 400 (1000) МГц. Они применяются для настройки и испытаний аппаратуры вещания с частотной модуляцией (УКВ ЧМ), телевидения, радионавигации, телеметрии, подвижной радиосвязи и т. п. В них применяются несколько видов модуляции и манипуляции. Для формирования диапазона частот применяются задающие генераторы с перестраиваемыми LC-контурами в диапазоне выходных частот или с гетеродинным способом переноса частоты. Получили распространение генераторы ультравысоких частот с делением частот задающего генератора (рис. 4-8). Этот способ предпочтительнее, так как в задающем генераторе не нужны коммутирующие механизмы, конструкция упрощается, стабильность частоты повышается.

    Задающий генератор ЗГ вырабатывает частоты верхнего поддиапазона, например 200—400 МГц, легко перекрываемые с помощью конденсатора переменной емкости. Переход к следующему поддиапазону осуществляется включением соответствующего числа делителей частоты, каждый из которых делит частоту на два. Выходные сигналы делителей несинусоидальны, поэтому после каждого из них включены полосовые фильтры Ф. Выбор нужного поддиапазона производится с помощью переключателя П. Частотная модуляция осуществляется в задающем генераторе, к колебательному контуру которого подсоединен параллельно варикап. Амплитудная модуляция происходит в широкополосном модуляторе М. Импульсная модуляция предусмотрена в широкополосном выходном усилителе Ух. Независимое осуществление различных видов модуляции в разных узлах генератора позволяет получать комбинированную модуляцию в любом сочетании. Имеется вспомогательный выход смодулированного сигнала через широкополосный усилитель со-относительная погрешность установки частоты 1 %.; нестабильность частоты (1-7- 1,5)* 10~4; погрешность установки модуляции 5— 10 %; диапазон модулирующих частот 50 Гц — 200 кГц).

    Электротехника ТОЭ типовые задания примеры Лабораторные