Лабораторная работа электротехника

Электротехника Лекции
  • ПОНЯТИЕ О ПЕРЕМЕННОМ ТОКЕ
  • ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ
  • Электрические цепи трехфазного
    электрического тока
  • СОЕДИНЕНИЕ ИСТОЧНИКОВ И
    ПРИЕМНИКОВ ЭНЕРГИИ ТРЕУГОЛЬНИКОМ
  • Электрические измерения и приборы
  • ЭЛЕКТРОДИНАМИЧЕСКАЯ СИСТЕМА
  • ИЗМЕРЕНИЕ ТОКА И НАПРЯЖЕНИЯ
  • Трансформаторы
  • ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ТРАНСФОРМАТОРЕ
  • ПРИВЕДЕННЫЙ ТРАНСФОРМАТОР
  • ВЕКТОРНАЯ ДИАГРАММА ТРАНСФОРМАТОРОВ
  • ТРЕХФАЗНЫЕ ТРАНСФОРМАТОРЫ
  • ТРАНСФОРМАТОР ДЛЯ ДУГОВОЙ СВАРКИ
  • Асинхронные машины
  • ПРИНЦИП ДЕЙСТВИЯ АСИНХРОННОГО
    ДВИГАТЕЛЯ
  • ПРИВЕДЕНИЕ ПАРАМЕТРОВ ОБМОТКИ
    РОТОРА К ОБМОТКЕ СТАТОРА
  • УРАВНЕНИЕ ВРАЩАЮЩЕГО МОМЕНТА
  • ОДНОФАЗНЫЕ АСИНХРОННЫЕ ДВИГАТЕЛИ
  • Двухфазный конденсаторный двигатель
  • СПЕЦИАЛЬНЫЕ РЕЖИМЫ РАБОТЫ
    АСИНХРОННЫХ МАШИН
  • Синхронные машины
  • СИНХРОННЫЙ ДВИГАТЕЛЬ
  • ШАГОВЫЙ ДВИГАТЕЛЬ
  • Машины постоянного тока
  • ОБМОТКИ ЯКОРЯ МАШИНЫ
    ПОСТОЯННОГО ТОКА
  • ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА
  • ОДНОЯКОРНЫЕ ПРЕОБРАЗОВАТЕЛИ
  • Электропривод и элементы систем автоматики
  • ЭЛЕКТРИЧЕСКИЕ АППАРАТЫ И ЭЛЕМЕНТЫ
  • Принцип автоматического управления
  • Электрооборудование станочного парка
    школьных мастерских и кабинетов
  • Электрические осветительные установки
  • ОПРЕДЕЛЕНИЕ СЕЧЕНИЯ ПРОВОДОВ
    ПО ДОПУСТИМОМУ НАГРЕВУ
  • Правила по технике безопасности
    для общеобразовательных школ
  • История развития электротехники.
  • Основные понятия и определения
    в электротехнике
  • Закон Ома для участка цепи, несодержащего ЭДС.
  • Смешанное соединение сопротивлений
  • Методы расчёта электрических цепей.
  • Метод контурных токов
  • Элементы электрических цепей
  • Сопротивление
  • Закон Ома
  • Законы Кирхгофа
  • Потенциальная диаграмма
  • Преобразование схем электрических цепей
  • Преобразование треугольника
    в эквивалентную звезду
  • Методы расчета сложных электрических цепей
  • Метод контурных токов
  • Метод узловых напряжений
  • Теорема компенсации
  • Теорема об эквивалентном источнике
  • Порядок расчета задачи методом
    эквивалентного генератора
  • Мощность в электрических цепях периодического
    синусоидального тока
  • РЕАКТИВНЫЕ ДВУХПОЛЮСНИКИ
  • Канонические схемы двухполюсников
  • Режимы резонанса в электрических цепях
  • Резонанс токов
  • Индуктивно связанные электрические цепи
  • Последовательное соединение индуктивно
    связанных катушек при встречном включении
  • Параллельное соединение индуктивно
    связанных катушек
  • Расчет цепей со взаимной индуктивностью.
  • Воздушный трансформатор
  • Генераторы
  • ИЗМЕРИТЕЛЬНЫЕ ГЕНЕРАТОРЫ
  • Генераторы гармонических колебаний
  • Характеристики генераторов звуковых частот
  • Генераторы сверхвысоких частот
  • Генераторы качающейся частоты
    и сигналов специальной формы
  • Генераторы шумовых сигналов
  • Генераторы шума на полупроводниковых прибора
  • Генераторы шумоподобных сигналов
  • ГЕНЕРАТОРЫ СИГНАЛОВ
    СВЕРХВЫСОКИХ ЧАСТОТ
  • Лабораторные работы
  • ПОРЯДОК ВЫПОЛНЕНИЯ
    ЛАБОРАТОРНЫХ РАБОТ
  • Исследование характеристик источника
    ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ постоянного тока
  • ИССЛЕДОВАНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ
  • Исследование переходных процессов в
    цепях первого порядка
  • ИССЛЕДОВАНИЕ ЛИНЕЙНЫХ ПАССИВНЫХ
    ДВУХПОЛЮСНИКОВ
  • ИССЛЕДОВАНИЕ ЯВЛЕНИЯ РЕЗОНАНСА
  • ИССЕДОВАНИЕ ТРЕХФАЗНЫХ
    ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ
  • ИССЛЕДОВАНИЕ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ
    НЕСИНУСОИДАЛЬНОГО ПЕРИОДИЧЕСКОГО ТОКА
  • Исследование однофазного трансформатора
  • Исследование трехфазного асинхронного
    двигателя с короткозамкнутым ротором
  • Исследование синхронных микродвигателей
  • Исследование исполнительного двигателя
    постоянного тока
  • ИССЛЕДОВАНИЕ ЦЕПИ ПОСТОЯННОГО ТОКА
    МЕТОДОМ УЗЛОВЫХ НАПРЯЖЕНИЙ
  • Метод эквивалентного генератора напряжения.
  • ИССЛЕДОВАНИЕ ПРОСТЫХ ЦЕПЕЙ
    СИНУСОИДАЛЬНОГО ТОКА
  • Описание лабораторной установки
  • Контрольная работа
  • РАСЧЕТ СЛОЖНОЙ ЦЕПИ ПОСТОЯННОГО ТОКА
  • Законы Кирхгофа
  • Примеры расчета линейных электрических цепей
    по законам Ома и Кирхгофа
  • Метод наложения.
  • Метод контурных токов
  • Метод узловых напряжений
  • Проверим выполнение второго закона Кирхгофа
    для внешнего контура
  • Метод эквивалентного генератора
  • Примеры расчета линейных электрических цепей
    методом эквивалентного генератора
  • Электрические цепи однофазного
    синусоидального тока
    .
  • Построить топографическую диаграмму напряжени
  • Проверить выполнение баланса мощностей.
  • Режимы резонанса в электрических цепях
  • Примеры расчета электрических цепей
     в режиме резонанса
  • Построить векторную диаграмму.
  • Цепи с индуктивно–связанными элементами
  • Воздушный трансформатор
  • Лабораторная работа 9

    Исследование синхронных микродвигателей

    Цель работы – исследование характеристик трехфазных синхронных реактивного и гистерезисного двигателей.

    Указания по выполнению работы

    Перед выполнением работы следует изучить раздел «Синхронные машины» по одному из учебников списка литературы, приведённого в конце на-стоящего пособия.

    Описание лабораторной установки


    Лабораторная установка (рис.9.1) содержит 2 электромеханических блока (ЭМБ), строботахометр СТ-3, лабораторный автотрансформатор (ЛАТр), диодный выпрямитель (В) и измерительный комплекс К50.

    Каждый из ЭМБ содержит исследуемый синхронный двигатель (СД) и нагрузочное устройство (НУ). Включение ЭМБ в электрическую схему установки осуществляется с помощью штепсельного разъема (ШР).

    Объектами исследований являются синхронный реактивный двигатель типа IМ-47 и синхронный гистерезисный двигатель типа Г-506 с техническими характеристиками, представленными в таблице 9.1.

    Таблица 9.1

    IМ-47

    Г-506

    Номинальная мощность на валу P2н, Вт

    30

    60

    Частота f, Гц

    50

    50

    Напряжение U, В

    220

    220

    Потребляемый ток Iн, А

    0,75

    1,2

    Скорость вращения п1, об/мин

    3000

    3000

    Номинальный момент Mн, Н·м

    0,1

    0,2


    Конструкция ЭМБ и принцип действия НУ поясняются рисунком 9.2.

     Рис.4.2

     
    Двигатель (1) установлен в нагрузочном устройстве и на его валу закреплен алюминиевый или медный диск (2). Диск вращается в воздушном зазоре между скобами магнитопровода (4) и сердечником неподвижного электромагнита (3). Тормозной момент создается в результате взаимодействия вихревых токов, возбуждаемых в теле вращающегося диска, и магнитного поля в зазоре. Этот момент действует на вал двигателя и (с противоположным знаком) на магнитопровод, скобы которого подвешены соосно с двигателем и жестко соединены с рычагом и закрепленным на нем противовесом (5). На другом конце рычага установлена нить отсчетного устройства (6). При возникновении тормозного момента скобы магнитопровода поворачиваются до тех пор, пока момент противовеса (5) не скомпенсирует тормозной момент. Таким образом, при соответствующей градуировке шкалы угломерного устройства (7), по ней можно измерить момент на валу двигателя. Величина тормозного момента пропорциональна величине магнитного потока, который, в свою очередь, зависит от величины тока в катушке электромагнита. Поэтому регулирование момента осуществляется с помощью автотрансформатора (ЛАТр на рис. 9.1), питающего через выпрямитель В катушку электромагнита. Предел измерения момента ±0,45 Н×м.

    Для измерения угла нагрузки θ и определения режима работы двигателя в лабораторной установке используется стробоскопический эффект, заключающийся в том, что вращающийся предмет будет казаться неподвижным, если его освещать световыми импульсами с частотой, равной частоте вращения. Для этого в установке используется строботахометр СТ-3, состоящий из импульсной лампы и генератора импульсов, синхронизирующего вспышки лампы с частотой сети, питающей двигатель. Таким образом, световые импульсы формируются с частотой 50 Гц и с этой же частотой вращается ротор в синхронном режиме. На конце вала двигателя противоположном тормозному диску закреплен диск с радиальной риской (8). Если этот диск осветить импульсной лампой, то в синхронном режиме риска будет казаться неподвижной, и при изменении момента на валу изображение риски будет смещаться на величину угла нагрузки q. При выходе из синхронизма изображение риски будет вращаться с частотой скольжения ротора. Измерение угла нагрузки производится по закрепленной на корпусе двигателя подвижной круговой угломерной шкале (9). Вращение шкалы используется для совмещения ее нулевой точки с изображением риски в режиме холостого хода двигателя.

    Программа работы

    1 Исследование характеристик трехфазного реактивного двигателя.

    1.1 Определение момента и мощности холостого хода.

    1.2 Определение углов и моментов выхода из синхронизма и входа в синхронизм.

    1.3 Исследование угловой и рабочих характеристик.

    2 Исследование характеристик трехфазного гистерезисного двигателя.

    2.1 Определение момента и мощности холостого хода.

    2.2 Определение углов и моментов выхода из синхронизма и входа в синхронизм.

    2.3 Исследование угловой и рабочих характеристик.

    Методика выполнения работы

    1 Исследование характеристик трехфазного реактивного двигателя.

    Ознакомиться с устройством и работой нагрузочной установки и строботахометра.

    Собрать схему, изображенную на рис.9.1, подключив с помощью ШР ЭМБ с реактивным двигателем типа IМ-47.

    С помощью выключателя S1 подключить испытуемый двигатель к питающей сети.

    Включить генератор частоты и лампу-вспышку соответствующими тумблерами на лицевой панели блока СТ-3.

    Направить световой поток лампы на диск (8) и убедиться в том, что риска неподвижна.

    1.1 Опыт холостого хода.

    Отключить НУ от источника питания, разомкнув выключатель S2.

    Измерить момент, напряжение, ток и мощность холостого хода в положениях «A» и «B» переключателя фаз комплекса К50 и занести данные в строку 1 таблицы 9.2.

    Таблица 9.2

    № п/п

    Результаты наблюдений

    Результаты вычислений

    θ

    град

    М

    Н·м

    U

    В

    IA

    IB

    РА

    РВ

    θ

    эл. гр.

    Р1

    Р2

    η

    %

    соsφ

    А

    Вт

    Вт

    1

    0

    2

    3

    4

    5

    6

    7

    (выход из синх)

    8

    (вход в синх)


    1.2 Режим выхода и входа в синхронизм.

    Подключить НУ к источнику питания, замкнув S2.

    Совместить нуль лимба угломерного устройства с риской диска.

    Плавно увеличивая с помощью ЛАТра нагрузочный момент и наблюдая за углом нагрузки, вывести двигатель из синхронизма (что соответствует началу вращения риски диска). Зафиксировать соответствующие этому режиму угол θ и момент М и записать в строку 7 таблицы 9.2 (показания приборов при выполнении данного пункта не фиксируются).

    Плавно уменьшая с помощью ЛАТра нагрузочный момент, ввести двигатель в синхронный режим (риска диска неподвижна) и зафиксировать соответствующий этому режиму момент М. Записать показания всех приборов в строку 8 таблицы 9.2.

    Совместить нуль лимба угломерного устройства с риской диска, снизив выходное напряжение ЛАТра до нуля, зафиксировать угол θ и записать в соответствующую ячейку таблицы 9.2.

    1.3 Исследование угловой и рабочих характеристик.

    Совместить нуль лимба угломерного устройства с риской диска.

    Плавно вращая рукоятку ЛАТра увеличивать момент нагрузки на валу двигателя в диапазоне от М=0.1Мн до М=0.9Мвых (Мвых – момент выхода из синхронизма). В пяти точках указанного диапазона провести измерения угла θ, линейного напряжения Uл, линейных токов IA и IB, и мощностей PA и PB двигателя в синхронном режиме (риска сектора неподвижна). Данные наблюдений занести в строки 2-6 таблицы 9.2.

    Снизить выходное напряжение ЛАТра до нуля.

    Разомкнуть выключатели S1 и S2, выключить лампу-вспышку и генератор импульсов.

    При оформлении отчета расчеты выполняются по результатам эксперимента с использованием следующих соотношений

    θ[эл. град]=p·θ[град];

    ,

    где: θ [эл. град] – угол нагрузки, р – число пар полюсов машины, Р1 – электрическая мощность, потребляемая двигателем, Р2 – полезная мощность на валу, η – КПД двигателя, cosφ – коэффициент мощности, т – кратность момента, i – кратность тока, U и I – соответственно действующие значения напряжения и тока фазы двигателя, Мн и Iн – номинальные значения соответственно момента и тока. Результаты расчета поместить в таблицу 9.2.

     Исследование характеристик трехфазного гистерезисного двигателя.

    Подключить к нагрузочному устройству с помощью ШР ЭМБ гистерезисный двигатель типа Г-506.

    Повторить п.п. 1.1-1.3. Данные измерений занести в таблицу 9.3, аналогичную по содержанию таблице 9.2.

    Содержание отчета

    Схема лабораторной установки.

    Заполненные таблицы 9.1-9.3.

    Графики угловых характеристик двигателей М(θ).

    Семейство рабочих характеристик Р1(Р2), М(Р2), I(Р2), п(Р2), η(Р2), cosφ(Р2), построенных по данным таблиц 9.2-9.3 и размещенных на одном рисунке для каждого двигателя. Следует помнить, что рабочие характеристики строятся для значений мощности Р2 в диапазоне от 0 до Р2н.

    Расcчётные соотношения и результаты расчёта.

    Электротехника ТОЭ типовые задания примеры Лабораторные