Фонарь-электрошокер

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Начертательная геометрия Пересечение поверхностей цилиндра и призмы Гиперболический параболоид Двуполостный гиперболоид Применение способа секущих плоскостей Поверхности второго порядка

Треугольник следов и его свойства. Теорема Польке.

Треугольник следов и его свойства.

В общем случае плоскость картины пересекает координатные плоскости по линиям, которые своими отрезками образуют так называемый треугольник следов (рисунок 11.3, 11.3а)

Рисунок 11.3 Рисунок 11.3а Проекции точки на три плоскости проекций. Октанты пространства В начертательной геометрии принято от пространственного изображения точки и ее проекций переходить к плоскому, или комплексному, чертежу, образованному вращением плоскости проекций вокруг осей проекций

Изображение имеет главную и вторичную проекции. Главной называется изображение А´ самой точки А; вторичной – изображение первичной проекции точки на какой – либо плоскости координат П1 П2 П3. Вторичных проекций может быть три, но преимущественно используется вторичная проекции на горизонтальной плоскости. При необходимости по главной и вторичной проекции могут быть построены и другие вторичные проекции на П2 и П3.

Таким образом, в аксонометрии имеется два поля проекций: поле главной и поле вторичной проекций. Обычно в начале строится вторичная проекция, а затем главная.

В этом плане аксонометрия не имеет принципиального отличия от ортогональных проекций, о чем свидетельствует решение задачи определения точки пересечения прямой АВ с плоскостью, заданной отсеком, аналогично решению в ортогональных проекциях (рисунок 11.4)

Рисунок 11.4

Аксонометрическое изображение (главная и вторичная проекции оригинала) с осями и масштабами являются обратимой проекцией и позволяет восстановить объект в пространстве.

Теорема Польке.

При построении параллельной проекции можно произвольно выбрать плоскость проекций П´ и направление проецирования.

Очевидно, любое изменение взаимного положения осей координат и плоскости проекций и всякое изменение направления вызовет как изменение положения аксонометрических осей, так и коэффициентов искажения по ним.

Геометр прошлого века К. Польке в 1853г., изучая вопрос о том, в какой зависимости находятся направление аксонометрических осей и коэффициенты искажения по ним от направления проецирования и положения плоскости проекций, пришел к следующему выводу.

Три произвольно выбранные отрезка О´x´, O´y´, O´z´ (рисунок 11.1) на плоскости П´, выходящие из одной точки, представляют параллельную проекцию трех равных и взаимно перпендикулярных отрезков Ox, Oy, Oz, выходящих из некоторой точки пространства. Доказательство теоремы Польке приведено в курсе Е.А. Глазунова и Н.Ф. Четверухина «Аксонометрия» (Гостехиздат, 1953).

Эта теорема К. Польке имеет существенное значение как для аксонометрии, так и для многих ее приложений. На основании теоремы Польке системы аксонометрических осей, а так же отношение коэффициентов искажения по ним могут быть заданны совершенно произвольно.

Коэффициенты искажения пропорциональны соответственно отрезкам, изображающим аксонометрические оси. Действительно, отрезки О´x´, О´y´, О´z´, которые являются числителями дробей, определяющих коэффициенты искажений u, v, w, могут быть согласно теореме Польке выбраны произвольно. Но все эти три произвольно выбранных отрезка служат параллельной проекцией трех равных и взаимно перпендикулярных отрезков пространства. Пусть длина каждого из них равна m. Составив отношение u : v : w = : : и, заменяем Ох, Оу, Оz через m, получим: u : v : w = O´x : O´y´ : O´z´, что и доказывает пропорциональность коэффициентов искажения соответствующим отрезкам.

11.4. Прямоугольная аксонометрия и ее свойства.

Для того чтобы направление проецирования было перпендикулярно картине, ее плоскость должно быть расположена под какими – то углами к пространственным осям координат. В этом случае треугольник следов в прямоугольной аксонометрии всегда остроугольный, аксонометрические оси являются высотами этого треугольника и образуют между собой тупые углы (рисунок 11.5)

Рисунок 11.5

При решении ряда задач приходится определять натуральные размеры отдельных элементов изображенного объекта (длины отрезков, величины углов и пр.) или, наоборот, строить эти элементы по заданным условиям.

Метрические задачи в аксонометрии проще решать в том случае, если элемент тем или иным способом приведен в плоскость картины или в плоскость, параллельную ей. После операций, проделанных в плоскости картины, элемент надо привести в исходное положение. Наиболее распространенным и практически удобным способом является способ вращение до совпадения элемента с плоскостью картины или до положения, перпендикулярного к картине.

В первую очередь этот способ применяется для определения натуральных масштабов по произвольно выбраны аксонометрическим или, наоборот, для установления аксонометрических масштабов по натуральным точкам. Он так же используется для определения положения картины и направления проецирования по отношению к координатным плоскостям, если это требуется по ходу работы.

На рисунке 11.5 видно, что плоскость картины отсекает от координатных плоскостей треугольники, ограниченные двумя отрезками осей координат и стороной треугольника следов. Эти треугольники на картине проецируются искаженно, но сохраняют сторону треугольника следов.

Для нахождения натуральной величины этих треугольников, а следовательно, и отсеченных отрезков осей надо их совместить с плоскостью картине вращением вокруг следа картины; при этом точка О´ - проекция начала координат – будет перемещаться по перпендикуляру к стороне треугольника следов (следу плоскости Р) и расположится на дуге окружности, построенной на стороне треугольника следов, как на диаметре (рисунок 11.6 а).

Рисунок 11.6

На совмещенных треугольниках будут определяться истинные величины отрезков координатных осей, а следовательно, и натуральные масштабы, что позволит установить показатели искажения, т.е. отношения аксонометрических масштабов к натуральным.

Но может быть выполнен и обратный процесс – определение положения осей аксонометрии по данным натуральным масштабам и выбранным показателям искажения.

Для определения натуральной величины отрезка только одной оси аксонометрии Z и натурального масштаба по ней вращение производится вокруг этой оси Z (рисунок 11.6 б), и совмещенное положение точки О´ будет так же на окружности, построенной на отрезке В´1´ как на диаметре. Здесь, как и в первом совмещении, будут установлены натуральный размер отрезка оси Z, натуральный масштаб и величина «сжатия» фигур, лежащих в горизонтальной плоскости, а следовательно, и «коэффициент сжатия» в направлении, параллельном оси Z, т.е. высоты объекта. Коэффициент сжатия – отношение О´1´ : O´31´ в дальнейшем будет использована для решения позиционных и метрических задач, а так же для преобразования кривых 2-го порядка в более простые (окружности).

На изображения, выполняемые в аксонометрических проекциях, имеются ГОСТы (ГОСТ 2.317 – 69), которые рекомендую следующие виды аксонометрических изображений:

1. Два вида прямоугольных аксонометрических проекций (изометрию и диметрию).

2. Три вида косоугольных (фронтальную изометрию, горизонтальную изометрию, фронтальную диметрию).


Рассмотрим задачу определения точки пересечения прямой с поверхностью конуса