Фонарь-электрошокер

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Начертательная геометрия Пересечение поверхностей цилиндра и призмы Гиперболический параболоид Двуполостный гиперболоид Применение способа секущих плоскостей Поверхности второго порядка

Пересечение многогранника плоскостью

Цель пересечения многогранников – выяснить их конструктивные особенности, которые невозможно определить на обычных проекциях.

При пересечении многогранника плоскостью в сечении получается плоская фигура, ограниченная линиями пересечения секущей плоскости с гранями многогранника, т.е. с плоскостями.

Линия пересечения многогранника плоскостью определяется по точкам пересечения рёбер многогранника (метод рёбер) или по линиям пересечения граней многогранника с данной плоскостью (метод граней), т.е. задача сводиться к определению точек пересечения прямой с плоскостью (в первом случае) или к определению линий пересечения плоскостей.

Фигуру, полученную от пересечения многогранника плоскостью называют многоугольником (фигурой) сечения, иногда упрощенно, сечением (рис. 5.2 DЕF)

Если секущая плоскость параллельна плоскости проекций, то фигура сечения проецируется на эту плоскость проекций без искажения – в натуральную величину (рис. 5.1 123). В противном случае сечение проецируется с искажением, в частности и прямой (рис. 5.2). Поэтому для определения натуральной величины сечения необходимо применить один из методов преобразования проекций (замены плоскостей проекций, вращения или совмещения).

5.4. Пересечение многогранника прямой

Прямые частного положения. Относительно плоскостей проекций прямые могут располагаться по разному. Если они параллельны или перпендикулярны плоскостям проекций, то говорят , что это прямые частного положения.

Задачи на определение точек пересечения прямой линии с многогранником решают в соответствии с алгоритмом построения точки пересечения прямой с плоскостью. Выпуклые многогранники пересекаются прямой линией в двух точках (рис. 5.5 – т. т. K и L).

Рис. 5.5

На рис. 5.5 прямая М заключена во фронтально-проецирующую плоскость Т. На горизонтальной проекции простроена горизонтальная проекция сечения пирамиды этой плоскостью ( 112131), а также определены горизонтальные проекции точек пересечения прямой М со сторонами 123 К1 и L1. Фронтальные проекции этих точек и видимость прямой М определены путем ортогонального проецирования.

Взаимное пересечение многогранников

Что касается линии взаимного пересечения двух многогранников, то она определяется по точкам пересечения рёбер одного многогранника с гранями другого: это известная задача на определение точки пересечения прямой с плоскостью (рис 5.6), хотя возможен вариант построения линии пересечения граней многогранников , т.е. линии пересечения двух плоскостей.

Рис. 5.6

На рис. 5.6 приведен пример построения линии пересечения прямой четырехгранной призмы и трёхгранной пирамиды. При решении задачи используем алгоритм построения точек пересечения ребер пирамиды (AS, BS и CS) с гранями призмы. Точки 7 и 8 пресечения пирамиды с одним ребром призмы с помощью горизонтально-проецирующей плоскости Р, проведенной через вершину пирамиды S и вышеуказанное ребро призмы.

В общем случае два многогранника пересекаются по линии, являющейся пространственным замкнутым многоугольником.

Линиями пересечения двух выпуклых многогранников являются один или два пространственных многоугольника.

При частичном пересечении многогранников имеет место неполное проницание или врезка, а при полном – полное проницание.

Следует помнить, что проекции линии пересечения двух многогранников всегда (!) располагаются внутри контура наложения одноименных проекций многогранников.


Рассмотрим задачу определения точки пересечения прямой с поверхностью конуса