Фонарь-электрошокер

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Начертательная геометрия Пересечение поверхностей цилиндра и призмы Гиперболический параболоид Двуполостный гиперболоид Применение способа секущих плоскостей Поверхности второго порядка

РАЗВЕРТКИ ПОВЕРХНОСТЕЙ. РАЗВЕРТКИ ГРАННЫХ ПОВЕРХНОСТЕЙ И ПОВЕРХНОСТЕЙ ВРАЩЕНИЯ

Для изготовления деталей, получаемых путем свертывания и изгиба листового или полосового материала, необходимо иметь заготовки - развертки будущих деталей.

Разверткой (выкройкой) поверхности тела называется плоская фигура, полученная путем совмещения всех точек данной поверхности с плоскостью без разрывов и складок.

Развертками поверхностей пользуются на практике для изготовления моделей разных сооружений, форм для металлических отливок, фасонных деталей и устройств в кровельном и котельном деле и т.п.

Эти развертки обычно делают по специальным чертежам. Для построения разверток поверхностей в основном используют следующие графические способы;

а) способ нормальных сечений;

б) способ раскатки;

в) способ триангуляции,(способ треугольников) Рассмотрим построения разверток данными способами на примерах:

8.1,Способ нормальных сечений

1 .Поверхность пересекают плоскостью, перпендикулярной к ее образующим (ребрам), рис 8.1 . Рассечем заданную призматическую поверхность фронтально - проецирующей плоскостью Ф, перпендикулярной к ребрам поверхности.

По теореме о проецировании прямого угла (если одна сторона прямого угла параллельна плоскости проекций, а вторая ей не перпендикулярна, то прямой угол проецируется на эту плоскость проекций без искажения) фронтальные проекции ребер и секущей плоскости будут взаимно перпендикулярны, так как ребра являются в данном примере фронталями. В сечении получим треугольник 1-2-3 (1² 2²;3²;1¢; 2¢; 3¢). Натуральную (действительную) величину сторон треугольника можем определить любым из ранее изученных методов. В данном случае проще использовать метод замены плоскостей проекций:

V/H -W/H1; H1 II Ф (X1 II Ф² ) => l¢12¢¢1 - натуральная величина нормального сечения.

2. На продолжении проекции Ф плоскости Ф ( на прямой k ) построим развертку 3² ; 2² ; 3² линии нормального сечения. Через полученные точки проведем перпендикуляры к прямой k. На этих перпендикулярах будут находиться проекции ребер поверхности на плоскости развертки.

3. Мысленно разрежем данную поверхность по ребру CF, и будем последовательно совмещать с плоскостью развертки боковые грани призмы. При этом концы А, В, С, D, Е, F ребер будут совмещаться в плоскостях, параллельных секущей плоскости Ф. Эти плоскости будут проецироваться на V в прямые, параллельные проекции Ф² .

4. В пересечении соответствующих проекций ребер и этих плоскостей получим точки Во, Ао, Со. Соединив эти точки ломаной линией, получим развертку боковой поверхности. В общем случае развертка поверхности данной призмы может быть, выполнена на любом месте листа чертежа. Для этого прямуюk проводим в любом месте (^рис8.2)) и на ней строим развертку Зо2о1о3о нормального сечения поверхности призмы.

Через полученные точки проводим перпендикуляры к прямой k и откладываем на них размеры соответствующих ребер, зная, что на плоскость проекции V они проецируются без искажения: loA0=l² A'';

105

2oBo=2// В";, , .Соединив точки Со, Во, ... Fo ломаной линией, получим развертку боковой поверхности призмы. Чтобы получить полную развертку призмы необходимо к развертке боковой поверхности пристроить основания призмы

8.2.Способ раскатки

Рис.8.3 В этом случае используется частное положение ребер призмы (боковые ребра - фронтали, а ребра оснований - горизонтали) и теорема о проецировании прямого угла (приведена в п. 8.1).

Рис. 8.2


Рис 8.3

При развертывании способом раскатки концы А, В, С, ребер поверхности будут перемешаться в плоскостях, перпендикулярных этим ребрам (ребра будут осями вращения этих точек), в данном примере - во фронтально — проецирующих плоскостях. Фронтальные проекции фа², Фв², Фс² этих плоскостей будут перпендикулярны к фронтальным проекциям ребер и пройдут через фронтальные проекции А", В , соответствующих точек.

Разрежем (мысленно) поверхность по ребру CF и будем поочередно совмещать (раскатывать) грани с плоскостью развертки. При совмещении грани CFEB положение точек С и F не изменится. Положение Во точки В на развертке определяется тем, что она отстоит от точки С на расстоянии ВоС²¢С¢, равном длине отрезка ВС (ВС в данном случае - горизонталь), и принадлежит проекции Фв² плоскости фб (в которой она вращается). Используя циркуль, находим точку Во на развертке. Аналогично находим остальные точки - Ао, Со,... Соединив найденные точки соответствующими прямыми, получаем развертку боковой поверхности призмы заданной поверхности. Для получения полной развертки призмы достаточно к развертке боковой поверхности пристроить основания призмы треугольник АоВоСо и треугольник DoEoFo/

Развертки деталей, ограниченных  плоскостями или развертывающимися кривыми поверхностями, могут быть развернуты и совмещены с плоскостью точно, В этом случае на развертке сохраняются точки и длины линий, лежащих на поверхности, причем каждой точке и отрезку прямой на развертке соответствует вполне определенная и единственная точка (или отрезок прямой) на поверхности и наоборот.

Развертки деталей, ограниченных  не развертывающимися поверхностями, строят приближенно (например, поверхность сферы).

8.3.Способ триангуляции (способ треугольников)

Способ треугольников (способ триангуляции) используется для построения развертки боковой поверхности пирамиды, а так же для построения боковой поверхности линейчатых поверхностей. Пример. Построить развертку боковой поверхности пирамиды SABC(рис 8.4,).

Развертка боковой поверхности пирамиды представляет собой плоскую фигуру, состоящую из треугольников - граней пирамиды. Поэтому построение развертки поверхности пирамиды сводится к


определению действительной величины ребер пирамиды и построению по трем сторонам треугольников - граней пирамиды.

На рис 8.4 определение действительной длины ребер пирамиды выполнено с помощью вращения их вокруг оси i (iÎS и i^H). Путем вращения ребра пирамиды совмещаются с плоскостью b(плоскость bôô V и bÉi). Определив действительные величины ребер [S² А2], [S² B2], [S² C2], приступаем к построению развертки. Из произвольной точки So проводим произвольную прямую а, откладываем на ней от точки So[SoA0]@[S² А2]. Из точки Ао проводим дугу радиусом

г1=[A¢B¢] , а из точки So- дугу радиусом Ri=[S² B2]. В пересечении дуг полусаем вершину Во треугольника S.0AoBo (треугольник SoAoBoS @треугольника SAB - грани пирамиды). Аналогично находятся точки So и Ао. Соединив точки AoB.oC0AoSo, получим развертку боковой поверхности пирамиды SABC.

При развертке линейчатых ( поверхности, образованные движением прямой линии, называют линейчатыми), развертывающихся поверхностей последние рассматривают как состоящие из очень большого числа бесконечно малых плоских элементов, иначе говоря, заменяют эту поверхность многогранной

поверхностью (аппроксимируют). Развертку поверхности строят как суммы разверток треугольных граней вписанной многогранной поверхности.

Заменяя плавную кривую ломаной, следует разбить эту кривую на такие дуги, длины которых возможно мало отличаются от сторон ломаной, В этом случае стороны многоугольников будут очень мало отличаться от другой развернутой кривой. Этот способ построения разверток называется способом триангуляции - развертываемая поверхность аппроксимируется многогранной поверхностью с треугольными гранями.

Пример. Построить развертку полной поверхности (боковой поверхности, поверхности основания и сечения) усеченного конуса вращения, рис 8.5

1. Делим основание конуса на 12 равных частей.

2. Соединяем эти 12 точек с вершиной (12 образующих). Строим их фронтальные проекции. Затем строим горизонтальную проекцию сечения. Построение видно из чертежа.

3. Боковая поверхность конуса вращения развертывается в сектор круга с углом

a=360°*D/2L,

где D - диаметр окружности основания конуса, а L - величина образующей конуса.

4. Затем откладываем на дуге 12 отрезков, равных 1/12 длины

окружности - основание конуса. Разрежем (мысленно) конус по образующей наибольшего размера.

На развертке необходимо откладывать истинные размеры образующих конуса, поэтому следует их определить. На фронтальной проекции только крайние образующие, проходящие через точки 1 и 7, проецируются без искажений.

Чтобы не загромождать чертеж, рядом, с фронтальной проекцией конуса чертим образующую S1² 7i², равную образующей S"7² и параллельную ей.

На этой образующей отмечаем параллельно основанию конуса точки пересечения образующих конуса с наклонной секущей плоскостью (кроме точек 1 и 7),

Далее на образующих развертки от точек 1,2,3,..., 12 откладываем размеры образующих конуса h1,h2,h3 ,h12.

Натуральную величину сечения строим прежде изученными методами. В данном примере использован метод замены плоскостей проекций.

К развертке боковой поверхности усеченного конуса пристраиваем круг - основание конуса и эллипс - основание конуса наклонной плоскостью.

Таким образом, получили полную развертку усеченного конуса методом триангуляции.

Рис 8.5


Рассмотрим задачу определения точки пересечения прямой с поверхностью конуса